On January 21, 2015, a sharp increase of the solar wind dynamic pressure impacted the magnetosphere. The magnetopause moved inward to the region L< 8 without causing a geomagnetic storm. The flux of the relativisti...On January 21, 2015, a sharp increase of the solar wind dynamic pressure impacted the magnetosphere. The magnetopause moved inward to the region L< 8 without causing a geomagnetic storm. The flux of the relativistic electrons in the outer radiation belt decreased by half during this event based on the observations of the particle radiation monitor(PRM) of the fourth of the China-Brazil Earth Resource Satellites(CBERS-4). The flux remained low for approximately 11 d; it did not recover after a small magnetic storm on January 26 but after a small magnetic storm on February 2. The loss and recovery of the relativistic electrons during this event are investigated using the PRM data, medium-and high-energy electron observations of NOAA-15 and the Van Allen Probes, medium-energy electron observations of GOES-13, and wave observations of the Van Allen Probes. This study shows that the loss of energetic electrons in this event is related to magnetospheric compression. The chorus waves accelerate the medium-energy electrons, which causes the recovery of relativistic electrons. The Van Allen Probes detected strong chorus waves in the region L =3–6 from January 21 to February 2. However, the flux of medium-energy electrons was low in the region. This implies that the long-lasting lack of recovery of the relativistic electrons after this event is due to the lack of the medium-energy"seed" electrons. The medium-energy electrons in the outer radiation belt may be a clue to predict the recovery of relativistic electrons.展开更多
The satellite navigation anti-interference technique, especially space anti-interference technique, is subjected to many restrictions, such as cost, energy depletion, and so on, and the satellite signal strength is li...The satellite navigation anti-interference technique, especially space anti-interference technique, is subjected to many restrictions, such as cost, energy depletion, and so on, and the satellite signal strength is limited by the International Radio Advisory Committee, the International Telecommunication Union (ITU) and satellite companies. This paper focuses on satellite navigation systems, especially satellite navigation systems adopting direct sequence spread spectrum (DSSS). The notch filter is used to remove some frequencies from the pseudorandom code frequency spectrum making use of its cyclostationarity first, then the filtered pseudorandom code is modulated by the carrier to attain energy suppression, but the pseudorandom code autocorrelation characteristic stays unchanged. The feasibility of this algorithm is verified by simulation results.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.41374181)the National Key Scientific Instrument and Equipment Development Projects of China(Grant No.2012YQ03014207)
文摘On January 21, 2015, a sharp increase of the solar wind dynamic pressure impacted the magnetosphere. The magnetopause moved inward to the region L< 8 without causing a geomagnetic storm. The flux of the relativistic electrons in the outer radiation belt decreased by half during this event based on the observations of the particle radiation monitor(PRM) of the fourth of the China-Brazil Earth Resource Satellites(CBERS-4). The flux remained low for approximately 11 d; it did not recover after a small magnetic storm on January 26 but after a small magnetic storm on February 2. The loss and recovery of the relativistic electrons during this event are investigated using the PRM data, medium-and high-energy electron observations of NOAA-15 and the Van Allen Probes, medium-energy electron observations of GOES-13, and wave observations of the Van Allen Probes. This study shows that the loss of energetic electrons in this event is related to magnetospheric compression. The chorus waves accelerate the medium-energy electrons, which causes the recovery of relativistic electrons. The Van Allen Probes detected strong chorus waves in the region L =3–6 from January 21 to February 2. However, the flux of medium-energy electrons was low in the region. This implies that the long-lasting lack of recovery of the relativistic electrons after this event is due to the lack of the medium-energy"seed" electrons. The medium-energy electrons in the outer radiation belt may be a clue to predict the recovery of relativistic electrons.
基金Supported by the National Natural Science Foundation of China(No. 60802018)the National Key Basic Research and Development Technology Plan (No. 2007CB815500)
文摘The satellite navigation anti-interference technique, especially space anti-interference technique, is subjected to many restrictions, such as cost, energy depletion, and so on, and the satellite signal strength is limited by the International Radio Advisory Committee, the International Telecommunication Union (ITU) and satellite companies. This paper focuses on satellite navigation systems, especially satellite navigation systems adopting direct sequence spread spectrum (DSSS). The notch filter is used to remove some frequencies from the pseudorandom code frequency spectrum making use of its cyclostationarity first, then the filtered pseudorandom code is modulated by the carrier to attain energy suppression, but the pseudorandom code autocorrelation characteristic stays unchanged. The feasibility of this algorithm is verified by simulation results.