A method of restoring scratches on old paintings is proposed,and the corresponding high-accuracy output workflow is also developed.Firstly the scanner is selected as an input device to get the RGB(red,green,blue)image...A method of restoring scratches on old paintings is proposed,and the corresponding high-accuracy output workflow is also developed.Firstly the scanner is selected as an input device to get the RGB(red,green,blue)image of the painting,and for the purpose of capturing high-quality image,scanner characterization is done by using neural network.And then the scratches on the RGB image are restored with the technology of digital inpainting,while the inpainting algorithm is mainly based on gradient vector and fast marching method.Finally the restored image is output with a printer,which is calibrated by using the high order polynomial regression method.In experiment the new replicated painting is well restored in the scratched areas,as well as keeps high resemblance with the original painting.展开更多
It is known that the building sector consumes about 40% of earth's resources in their process of commissioning, erection and subsequent operation. As a consequence there is significant amount of CO2 emission to the a...It is known that the building sector consumes about 40% of earth's resources in their process of commissioning, erection and subsequent operation. As a consequence there is significant amount of CO2 emission to the atmosphere. Assessment of environmental performances of buildings has assumed immense significance in such backdrop and calls for assessing the "Carbon Footprint" of building systems for estimating their environmental compatibility. The present paper discusses a case specific environmental evaluation exercise by estimating the Carbon Footprint of a conventionally constructed tourist accommodation by tracking its resource consumption pattern during both the execution and operational phases in the hot and humid climatic zone of Indian sea-side. The result of the analysis is compared against the average carrying capacity of Earth to develop a method of measuring and quantifying the building's environmental performance with respect to Earth's reported threshold of tolerance and check the extent of failure or success, as the case may be. This process also leads to a tool named 'Sustainability Quotient'. The method of quantification is simple and can be adopted for environmental assessment of both new and old buildings.展开更多
A mechanical separation process was developed for recovering metals from printed circuit board(PCB) scrap;it included three steps:impact crushing,sieving and fluidization separation.The mechanism of the technique was ...A mechanical separation process was developed for recovering metals from printed circuit board(PCB) scrap;it included three steps:impact crushing,sieving and fluidization separation.The mechanism of the technique was based on the difference in the crushabilities of metallic and nonmetallic materials in the PCBs that led to the concentrated distribution of metals in particles of larger sizes and nonmetals mostly in particles of smaller sizes.It was found that crushed PCB particles from 0.125 mm to 1.000 mm contained about 80% of metals in the PCBs.Metals acquired satisfactory liberation in particles smaller than 0.800 mm.The crushed PCB particles were sieved into fractions of different size ranges.Each fraction separately went through a gas-solid fluidized bed operating at a selected optimal gas velocity for the specific size range.Approximately 95% of metals in printed circuit board particles from 0.125 mm to 0.800 mm was recovered by the gas-fluidized bed separator at the selected optimal gas velocity.However,separation of metals from particles smaller than 0.125 mm was not satisfactory.Further study is needed on metal recovery from fine particles.展开更多
Integrating the topology design and printing method offers a promising methodology to realize large stretchability for interconnects.Herein,eco-friendly and waterbased Ag nanowires(NWs)inks were formulated and used fo...Integrating the topology design and printing method offers a promising methodology to realize large stretchability for interconnects.Herein,eco-friendly and waterbased Ag nanowires(NWs)inks were formulated and used for screen-printing highly stretchable and flexible interconnects on a large area(more than 335 mm x 175 mm).The stretchability of the interconnects was realized by introducing kirigami topology structures.The topology designed models were established to simulate the influence of kirigami patterns on wire compliance and to estimate the maximum stretchability via finite element analysis(FEA).The mechanic mechanism results demonstrate that an increase of the wave numbers results in larger stretchability,and the rectangular type of wave shows better stretchability than the zigzag and sine structures.Comparatively,the electrical and mechanical properties of the interconnects were measured and analyzed,and the experimental results were consistent with FEA.The electric conductivity of the interconnects is stable at^10,427 S cm-1 even after 1000 cycles of 15.83 mm radius bending,280%stretching and 200%twisting-stretching deformation,demonstrating outstanding mechanical reliability of the interconnects.The topology designed interconnects have been applied in stretchable flexible light-emitting diode,indicating their broad application prospects in next-generation stretchable electronics.展开更多
Flexible electronics utilizing single crystalline semiconductors typically require post-growth processes to assemble and incorporate the crystalline materials onto flexible substrates. Here we present a high-precision...Flexible electronics utilizing single crystalline semiconductors typically require post-growth processes to assemble and incorporate the crystalline materials onto flexible substrates. Here we present a high-precision transfer-printing method for vertical arrays of single crystalline semiconductor materials with widely varying aspect ratios and densities enabling the assembly of arrays on flexible substrates in a vertical fashion. Complementary fabrication processes for integrating transferred arrays into flexible devices are also presented and characterized. Robust contacts to transferred silicon wire arrays are demonstrated and shown to be stable under flexing stress down to bending radii of 20 mm. The fabricated devices exhibit a reversible tactile response enabling silicon based, nonpiezoelectric, and flexible tactile sensors. The presented system leads the way towards high-throughput, manufacturable, and scalable fabrication of flexible devices.展开更多
Hydraulic performance of an inlet plenum in a printed-circuit heat exchanger has been analyzed using three-dimensional Reynolds-Averaged Navier-Stokes equations. The numerical model of the inlet plenum was constructed...Hydraulic performance of an inlet plenum in a printed-circuit heat exchanger has been analyzed using three-dimensional Reynolds-Averaged Navier-Stokes equations. The numerical model of the inlet plenum was constructed through grid dependency test, calculation domain tests, and turbulence model and numerical scheme selections. Shear stress transport turbulence model was used for analysis of turbulence. Non-uniformity of the flow in zigzag flow channels was evaluated for the reference case. Parametric studies have been performed with the angle of the inlet plenum wall, radius of curvature of the inlet plenum wall, and width of the inlet pipes. The effects of these parameters on the flow uniformity and friction performance were evaluated.展开更多
The effect of grid shape on the properties of transparent conductive films(TCFs) is theoretically analyzed and experimentally verified. The light transmittance by three types of grid shapes: triangle, square and hexag...The effect of grid shape on the properties of transparent conductive films(TCFs) is theoretically analyzed and experimentally verified. The light transmittance by three types of grid shapes: triangle, square and hexagon have been theoretically calculated and simulated. It was found that hexagonal grid unit has the highest light transmittance limit under the practical lattice parameters and its decrease in light transmittance caused by the increase of line width in printing process is the least. The grid of three different shapes with same theoretical transmittance is fabricated through flexographic printing. The result shows that the actual light transmittance of the printed TCFs is lower than its theoretical value because of the inevitable width increase of printed grid lines, with slight difference between the three shapes. However, it is greatly different in terms of conductivity, leading to variation in the quality factor Q(defined as the ratio of light transmittance to total resistance) which represents the performance of TCFs. The Q of hexagonal grid(6.04) is the highest, which is 21% higher than that of the square grid.展开更多
基金"13115"Sci-Tech Innovation Programof Shaanxi Province,China(No.2008ZDKG39)Youth Foundation of Xi'an University of Technology,China(No.104210807)
文摘A method of restoring scratches on old paintings is proposed,and the corresponding high-accuracy output workflow is also developed.Firstly the scanner is selected as an input device to get the RGB(red,green,blue)image of the painting,and for the purpose of capturing high-quality image,scanner characterization is done by using neural network.And then the scratches on the RGB image are restored with the technology of digital inpainting,while the inpainting algorithm is mainly based on gradient vector and fast marching method.Finally the restored image is output with a printer,which is calibrated by using the high order polynomial regression method.In experiment the new replicated painting is well restored in the scratched areas,as well as keeps high resemblance with the original painting.
文摘It is known that the building sector consumes about 40% of earth's resources in their process of commissioning, erection and subsequent operation. As a consequence there is significant amount of CO2 emission to the atmosphere. Assessment of environmental performances of buildings has assumed immense significance in such backdrop and calls for assessing the "Carbon Footprint" of building systems for estimating their environmental compatibility. The present paper discusses a case specific environmental evaluation exercise by estimating the Carbon Footprint of a conventionally constructed tourist accommodation by tracking its resource consumption pattern during both the execution and operational phases in the hot and humid climatic zone of Indian sea-side. The result of the analysis is compared against the average carrying capacity of Earth to develop a method of measuring and quantifying the building's environmental performance with respect to Earth's reported threshold of tolerance and check the extent of failure or success, as the case may be. This process also leads to a tool named 'Sustainability Quotient'. The method of quantification is simple and can be adopted for environmental assessment of both new and old buildings.
基金the Shanghai EXPO Special Project from the Ministry of Science and Technology of China under the Grant No. 2004BA908B02
文摘A mechanical separation process was developed for recovering metals from printed circuit board(PCB) scrap;it included three steps:impact crushing,sieving and fluidization separation.The mechanism of the technique was based on the difference in the crushabilities of metallic and nonmetallic materials in the PCBs that led to the concentrated distribution of metals in particles of larger sizes and nonmetals mostly in particles of smaller sizes.It was found that crushed PCB particles from 0.125 mm to 1.000 mm contained about 80% of metals in the PCBs.Metals acquired satisfactory liberation in particles smaller than 0.800 mm.The crushed PCB particles were sieved into fractions of different size ranges.Each fraction separately went through a gas-solid fluidized bed operating at a selected optimal gas velocity for the specific size range.Approximately 95% of metals in printed circuit board particles from 0.125 mm to 0.800 mm was recovered by the gas-fluidized bed separator at the selected optimal gas velocity.However,separation of metals from particles smaller than 0.125 mm was not satisfactory.Further study is needed on metal recovery from fine particles.
基金supported by the National Natural Science Foundation of China(51471121)the Basic Research Plan Program of Shenzhen City(JCYJ20170303170426117)+2 种基金the Natural Science Foundation of Jiangsu Province(BK20160383)the Fundamental Research Funds for the Central Universities(2042018kf203)Wuhan University
文摘Integrating the topology design and printing method offers a promising methodology to realize large stretchability for interconnects.Herein,eco-friendly and waterbased Ag nanowires(NWs)inks were formulated and used for screen-printing highly stretchable and flexible interconnects on a large area(more than 335 mm x 175 mm).The stretchability of the interconnects was realized by introducing kirigami topology structures.The topology designed models were established to simulate the influence of kirigami patterns on wire compliance and to estimate the maximum stretchability via finite element analysis(FEA).The mechanic mechanism results demonstrate that an increase of the wave numbers results in larger stretchability,and the rectangular type of wave shows better stretchability than the zigzag and sine structures.Comparatively,the electrical and mechanical properties of the interconnects were measured and analyzed,and the experimental results were consistent with FEA.The electric conductivity of the interconnects is stable at^10,427 S cm-1 even after 1000 cycles of 15.83 mm radius bending,280%stretching and 200%twisting-stretching deformation,demonstrating outstanding mechanical reliability of the interconnects.The topology designed interconnects have been applied in stretchable flexible light-emitting diode,indicating their broad application prospects in next-generation stretchable electronics.
文摘Flexible electronics utilizing single crystalline semiconductors typically require post-growth processes to assemble and incorporate the crystalline materials onto flexible substrates. Here we present a high-precision transfer-printing method for vertical arrays of single crystalline semiconductor materials with widely varying aspect ratios and densities enabling the assembly of arrays on flexible substrates in a vertical fashion. Complementary fabrication processes for integrating transferred arrays into flexible devices are also presented and characterized. Robust contacts to transferred silicon wire arrays are demonstrated and shown to be stable under flexing stress down to bending radii of 20 mm. The fabricated devices exhibit a reversible tactile response enabling silicon based, nonpiezoelectric, and flexible tactile sensors. The presented system leads the way towards high-throughput, manufacturable, and scalable fabrication of flexible devices.
基金supported by the National Research Foundation of Korea (NRF), (Grant No. 2009-0083510)funded by the Korean government (MSIP) through the Multi-phenomena CFD Engineering Research Center
文摘Hydraulic performance of an inlet plenum in a printed-circuit heat exchanger has been analyzed using three-dimensional Reynolds-Averaged Navier-Stokes equations. The numerical model of the inlet plenum was constructed through grid dependency test, calculation domain tests, and turbulence model and numerical scheme selections. Shear stress transport turbulence model was used for analysis of turbulence. Non-uniformity of the flow in zigzag flow channels was evaluated for the reference case. Parametric studies have been performed with the angle of the inlet plenum wall, radius of curvature of the inlet plenum wall, and width of the inlet pipes. The effects of these parameters on the flow uniformity and friction performance were evaluated.
基金supported by the Beijing Municipal Commission of Education Foundation for School Innovation Ability Promotion Plan(Grant No.TJSHG201310015016)the Key Project of Beijing Institute of Graphic Communication(Grant No.Ea201501)the Creative Groups of Materials and Technology of Printed Electronics(Grant No.23190113100)
文摘The effect of grid shape on the properties of transparent conductive films(TCFs) is theoretically analyzed and experimentally verified. The light transmittance by three types of grid shapes: triangle, square and hexagon have been theoretically calculated and simulated. It was found that hexagonal grid unit has the highest light transmittance limit under the practical lattice parameters and its decrease in light transmittance caused by the increase of line width in printing process is the least. The grid of three different shapes with same theoretical transmittance is fabricated through flexographic printing. The result shows that the actual light transmittance of the printed TCFs is lower than its theoretical value because of the inevitable width increase of printed grid lines, with slight difference between the three shapes. However, it is greatly different in terms of conductivity, leading to variation in the quality factor Q(defined as the ratio of light transmittance to total resistance) which represents the performance of TCFs. The Q of hexagonal grid(6.04) is the highest, which is 21% higher than that of the square grid.