期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
华北新构造:印欧碰撞远场效应与太平洋俯冲地幔上涌之间的相互作用 被引量:30
1
作者 张岳桥 施炜 董树文 《地质学报》 EI CAS CSCD 北大核心 2019年第5期971-1001,共31页
作为大陆内部典型的伸展断陷区和强震活动区,华北地区处于东部太平洋板块俯冲构造和西部印欧大陆碰撞构造的双重大地构造背景之下,其新构造运动相当复杂:西部沿鄂尔多斯地块周缘两个地堑盆地系引张伸展断陷作用、中部太行山块体的局部... 作为大陆内部典型的伸展断陷区和强震活动区,华北地区处于东部太平洋板块俯冲构造和西部印欧大陆碰撞构造的双重大地构造背景之下,其新构造运动相当复杂:西部沿鄂尔多斯地块周缘两个地堑盆地系引张伸展断陷作用、中部太行山块体的局部断陷和整体隆升、东部华北平原区和渤海湾海域区的区域沉降,南缘沿秦岭构造带的左旋走滑拉张活动,东缘沿郯庐断裂带的右旋挤压走滑活动。这些不同类型的断裂构造在晚新生代的阶段性活动,产生了复杂的构造地貌组合特征。综合研究发现,华北晚新生代经历了3期伸展断陷-挤压隆升演化阶段:新近纪晚期(10~2.5 Ma)、早中更新世和晚更新世以来。地壳引张应力方向或NW-SE、或NE-SW向;地块隆升导致湖盆的消亡,挤压应力方向为NE-SW至W-E向。研究认为,华北地区新构造受两个岩石圈构造过程的相互影响:印欧碰撞产生的远程效应和东部岩石圈地幔的上涌。一方面,青藏高原东北缘地块的持续推挤及其构造应力向东的传递导致鄂尔多斯地块反时针旋转和秦岭山地的向东挤出逃逸,这个挤出构造动力学统治了华北地区晚新生代的引张伸展、斜张走滑和挤压变形。尤其是,新近纪晚期强烈的NW-SE向地壳伸展变形与青藏东缘挤出造山作用同步(10~9 Ma至4.2 Ma);上新世末期(约2.5 Ma)、晚更新世早期(约200~70 ka)和晚更新世晚期—全新世(约20 ka以来)3次构造挤压事件与青藏高原东缘构造事件基本对应。另一方面,岩石圈地幔上涌主导了华北东部平原区的区域地壳沉降,同时伴随着早、中更新世的5期幔源火山活动。这两个岩石圈构造作用力此消彼长,深刻统治着华北地区新构造与现今活动构造以及地震构造。 展开更多
关键词 新构造与活动构造 地壳伸展 挤压走滑与伸展走滑 印欧碰撞远程效应 岩石圈地幔上涌 华北地区
下载PDF
特提斯喜马拉雅地块白垩纪古纬度变化对印欧碰撞模式的制约 被引量:3
2
作者 张也 黄宝春 《中国科学:地球科学》 CSCD 北大核心 2017年第6期674-683,共10页
印度与欧亚大陆初始碰撞的模式和时限是正确认识青藏高原地质演化的前提和基础.然而,根据相同的古地磁数据,不同学者对此却提出了截然不同的印欧大陆碰撞模型.本文从白垩纪期间印度板块的运动图像出发,分析了印度板块白垩纪期间的近90&#... 印度与欧亚大陆初始碰撞的模式和时限是正确认识青藏高原地质演化的前提和基础.然而,根据相同的古地磁数据,不同学者对此却提出了截然不同的印欧大陆碰撞模型.本文从白垩纪期间印度板块的运动图像出发,分析了印度板块白垩纪期间的近90°逆时针旋转对其内部不同参考点之间相对纬度变化的影响.我们发现在印欧碰撞前存在刚性/准刚性的大印度板块的前提条件下,前人基于特提斯喜马拉雅地块白垩纪观测古纬度与同时期印度板块视极移曲线换算得到的期望古纬度之间的变化关系,所提出的印欧大陆碰撞的"大印度洋盆地"或"陆间盆地"伸展模型,主要源自于白垩纪期间大印度板块自身近90°的逆时针水平旋转所导致的板块内部古纬度的相对变化.另一方面,假设碰撞前特提斯喜马拉雅和印度克拉通是两个相互独立的块体,通过白垩纪期间特提斯喜马拉雅地块与印度克拉通古地理位置的重建,我们认为在缺少充分地质证据情况下,特提斯喜马拉雅地块上的现有古地磁数据尚难以确定印度克拉通和特提斯喜马拉雅地块之间相对构造关系;早白垩世"大印度洋盆地"伸展模型仅仅是诸多可能之一. 展开更多
关键词 印欧碰撞模型 特提斯喜马拉雅 视极移曲线 古纬度 块体旋转
原文传递
金沙江-哀牢山富碱侵入岩带的判别、成因及构造环境 被引量:4
3
作者 郭小飞 刘汇川 +2 位作者 吴开兴 刘卫明 张晓兵 《江西理工大学学报》 CAS 2018年第5期71-78,共8页
印度与欧亚大陆碰撞的构造演化过程和岩浆作用响应一直以来都是地质学研究的热点.伴随该陆陆碰撞事件,青藏高原东缘金沙江-哀牢山富碱侵入岩带发育并记录了其部分碰撞过程,本研究针对该富碱侵入岩带开展了综合分析.金沙江-哀牢山新生代... 印度与欧亚大陆碰撞的构造演化过程和岩浆作用响应一直以来都是地质学研究的热点.伴随该陆陆碰撞事件,青藏高原东缘金沙江-哀牢山富碱侵入岩带发育并记录了其部分碰撞过程,本研究针对该富碱侵入岩带开展了综合分析.金沙江-哀牢山新生代富碱岩浆岩从基性到中酸性岩均有产出,年龄集中在44~31 Ma.富碱岩浆有两种可能的成因:(1)古洋壳板块和岩石圈地幔部分熔融,(2)在印度板块俯冲过程中软流圈物质上涌引起加厚大陆下地壳部分熔融.两种成因均说明富碱岩浆是处在区域构造动力体制转换阶段及应力相对松弛的构造背景.金沙江-哀牢山富碱侵入岩与区内剪切走滑断裂系统伴生,可能暗示断裂系统切割深度已达岩石圈地幔. 展开更多
关键词 印欧碰撞 金沙江-衰牢山构造带 富碱侵入岩 走滑剪切 壳幔作用
下载PDF
Geochemistry and Zircon U–Pb age of the Yao'an pseudoleucite porphyry,Yunnan Province,China 被引量:10
4
作者 Chundi Sun Peng Wu +4 位作者 Die Wang Shenjin Guan Xiaojun Jiang Longyan Jiang Longyan Wang 《Acta Geochimica》 EI CAS CSCD 2017年第2期316-328,共13页
The Yao'an Pb–Ag deposit, located in the Chuxiong Basin, western Yangtze Block, is an important component of the Jinshajiang–Ailaoshan alkaline porphyry–related polymetallic intrusive belt. This complex suite o... The Yao'an Pb–Ag deposit, located in the Chuxiong Basin, western Yangtze Block, is an important component of the Jinshajiang–Ailaoshan alkaline porphyry–related polymetallic intrusive belt. This complex suite of rock bodies includes a vein of pseudoleucite porphyry within deposits of syenite porphyry and trachyte.The pseudoleucite is characterized by a variable greyish,greyish-white, and greyish-green porphyritic texture. Phenocrysts are mainly pseudoleucite with small amounts of alkali feldspar and biotite. In an intense event, leucite phenocrysts altered to orthoclase, kaolinite, and quartz.Both the pseudoleucite porphyry and the syenite porphyry samples were typical alkali-rich, K-rich, al-rich rocks with high LaN/YbNratios; enriched in light rare earth elements and large-ion lithophile elements, and depleted in high field strength elements; and with strongly negative Ta, Nb, and Ti(TNT) anomalies and slightly negative Eu anomalies—all characteristics of subduction-zone mantle-derived rock.We obtained a LA-ICP-MS zircon U–Pb age of 34.1 ± 0.3 Ma(MSWD = 2.4), which is younger than the established age of the Indian and Eurasian Plate collision.The magma derived from a Type-II enriched mantle formed in a post-collisional plate tectonic setting. The geochemical characteristics of the Yao'an pseudoleucite porphyry are powerful evidence that the porphyry'sdevelopment was closely linked to the Jinshajiang–Ailaoshan fault and to the Indian-Eurasian collision. 展开更多
关键词 GEOCHEMISTRY U-Pb age Pseudoleucite porphyry Pb-Ag deposit Yao'an Yunnan Province
下载PDF
早白垩世存在刚性/准刚性大印度板块的古地磁学新证据 被引量:3
5
作者 张也 黄宝春 赵千 《科学通报》 EI CAS CSCD 北大核心 2019年第21期2225-2244,共20页
白垩纪期间特提斯喜马拉雅地块与印度克拉通之间的构造关系,是正确认识印度与欧亚大陆碰撞(简称印欧碰撞)模式的关键.本研究通过对特提斯喜马拉雅东部浪卡子县工布学乡下白垩统桑秀组岩石的系统古地磁学和年代学研究,结合早白垩世冈瓦... 白垩纪期间特提斯喜马拉雅地块与印度克拉通之间的构造关系,是正确认识印度与欧亚大陆碰撞(简称印欧碰撞)模式的关键.本研究通过对特提斯喜马拉雅东部浪卡子县工布学乡下白垩统桑秀组岩石的系统古地磁学和年代学研究,结合早白垩世冈瓦纳大陆的重建和印度板块白垩纪的运动轨迹,在对比分析特提斯喜马拉雅地块早白垩世以来古地磁数据的基础上,提出印欧初始碰撞前存在一个刚性/准刚性的大印度板块,印欧碰撞仍为经典的陆陆碰撞.首先,对采样剖面顶部砂岩和底部安山岩的U-Pb锆石年代学研究限定了桑秀组火山岩的喷发年龄为早白垩世的~134 Ma.其次,岩石磁学研究表明携带高温(高场)特征剩磁分量的主要磁性载体为磁铁矿和钛磁铁矿;进一步古地磁测试分析在采样剖面褶皱两翼共23个采点中获得了可靠的特征剩磁组分,经相邻熔岩流古地磁方向去重检验后的特征剩磁平均方向和对应古地磁极位置分别为D*/I*=308.7°/-57.6°, k=29.5,α95=8.5°(N=11)和6.3°N,308.6°E(A95=9.1°).特征剩磁分量在99%置信水平上通过了褶皱检验和地球磁场长期变模型的检验,指示其为早白垩世末期区域褶皱形成之前获得的剩磁组分,并有效地平均掉了古地球磁场的长期变化.因此,该特征剩磁组分很可能代表了桑秀组火山岩形成时获得的原生剩磁.结果表明,早白垩世特提斯喜马拉雅地块的观测古纬度和古磁偏角与由同时期印度板块古地磁参考极计算获得的期望古纬度和古磁偏角完全一致,指示藏南桑秀组火山岩形成时期特提斯喜马拉雅与印度克拉通之间具有刚性/准刚性板块的特征. 展开更多
关键词 特提斯喜马拉雅 大印度板块 早白垩世 古地磁学 印欧碰撞 刚性板块
原文传递
Anatomy of composition and nature of plate convergence: Insights for alternative thoughts for terminal India-Eurasia collision 被引量:22
6
作者 XIAO WenJiao AO SongJian +7 位作者 YANG Lei HAN ChunMing WAN Bo ZHANG Ji'En ZHANG ZhiYong LI Rui CHEN ZhenYu SONG ShuaiHua 《Science China Earth Sciences》 SCIE EI CAS CSCD 2017年第6期1015-1039,共25页
The pattern and timing of collision between India and Eurasia have long been a major concern of the international community. However, no consensus has been reached hitherto. To explore and resolve the disagreements in... The pattern and timing of collision between India and Eurasia have long been a major concern of the international community. However, no consensus has been reached hitherto. To explore and resolve the disagreements in the Himalayan study,in this paper we begin with the methodology and basic principles for the anatomy of composition and nature of convergent margins,then followed by an effort to conduct a similar anatomy for the India-Eurasia collision. One of the most common patterns of plate convergence involves a passive continental margin, an active continental margin and intra-oceanic basins together with accreted terranes in between. The ultimate configuration and location of the terminal suture zone are controlled by the basal surface of the accretionary wedge, which may show fairly complex morphology with Z-shape and fluctuant geometry. One plausible method to determine the terminal suture zone is to dissect the compositions and structures of active continental margins. It requires a focus on various tectonic elements belonging to the upper plate, such as accretionary wedges, high-pressure(HP)-ultra-high-pressure(UHP) metamorphic rocks, Barrovian-type metamorphic rocks and basement nappes, together with superimposed forearc basins.Such geological records can define the extreme limits and the intervening surface separating active margin from the passive one,thus offering a general sketch for the surface trace of the terminal suture zone often with a cryptic feature. Furthermore, the occurrence of the cryptic suture zone in depth may be constrained by geophysical data, which, in combination with outcrop studies of HP-UHP metamorphic rocks, enables us to outline the terminal suture zone. The southern part of the Himalayan orogen records complicated temporal and spatial features, which are hard to be fully explained by the classic "two-plate-one-ocean" template,therefore re-anatomy of the compositions and nature for this region is necessitated. Taking advantage of the methodology and basic principles of plate convergence anatomy and synthesizing previous studies together with our recent research, we may gain new insights into the evolution of the Himalayan orogeny.(1) The Yarlung-Zangbo ophiolite is composed of multiple tectonic units rather than a single terminal suture zone, and a group of different tectonic units were juxtaposed against each other in the backstop of the Gangdese forearc.(2) The Tethyan Himalayan Sequence(THS) contains mélanges with typical block-in-matrix structures, uniform southwards paleocurrents and age spectra of detrital zircons typical of Eurasia continent. All of these facts indicate that the THS belonged to Eurasia plate before the terminal collision, emplaced in the forearc of the Gangdese arc.(3) The Greater Himalayan Crystalline Complex(GHC) and Lesser Himalayan Sequence(LHS) comprise complex components including eclogites emplaced into the GHC and the upper part of the LHS. Judging from the fact that HP-UHP metamorphic rocks are exhumed and emplaced in the upper plate, the GHC and the upper part of the LHS where eclogite occur should be assigned to the upper plate, lying above the terminal subduction zone surface. It is the very surface along which the continuous subduction of the India subcontinent occurred, therefore acting as the terminal, cryptic suture. From the suture further southward, the bulk rock associations of the LHS and Sub-Himalayan Sequence(Siwalik) show little affinity of mélange, probably belonging to the foreland system of the India plate. By the anatomy of tectonic features of all the tectonic units in the Himalayan orogen as well as the ages of the subduction-accretion related deformation, we conclude that the terminal India-Eurasia collision occurred after 14 Ma, the timing of the metamorphism of the eclogites emplaced into the upper plate. The development of rifts stretching in N-S direction in Tibet and tectonic events with the transition from sinistral to dextral movements in shear zones, such as the Ailaoshan fault in East Tibet, can coordinately reflect the scale and geodynamic influence of the India-Eurasia convergence zone.By conducting a detailed anatomy of the southern Himalayas, we propose a new model for the final collision-accretion of the Himalayan orogeny. Our study indicates that the anatomy of structures, composition, and tectonic nature is the key to a better understanding of orogenic belts, which may apply to all the orogenic belts around the world. We also point out that several important issues regarding the detailed anatomy of the structures, compositions and tectonic nature of the Himalayan orogeny in future. 展开更多
关键词 Himalayan orogen Yarlung-Zangbo ophiolite Tethyan Himalayan Sequence India-Eurasia collision Anatomy of orogeny
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部