Earthquake-triggered landslides have aroused widespread attention because of their tremendous ability to harm people's lives and properties.The best way to avoid and mitigate their damage is to develop landslide h...Earthquake-triggered landslides have aroused widespread attention because of their tremendous ability to harm people's lives and properties.The best way to avoid and mitigate their damage is to develop landslide hazard maps and make them available to the public in advance of an earthquake.Future construction can then be built according to the level of hazard and existing structures can be retrofit as necessary.During recent years various approaches have been made to develop landslide hazard maps using statistical analysis or physical models.However,these methods have limitations.This study introduces a new GIS-based approach,using the contributing weight model,to evaluate the hazard of seismically-induced landslides.In this study,the city and surrounding area of Dujiangyan was selected as the research area because of its moderate-high seismic activity.The parameters incorporated into the model that related to the probability of landslide occurrence were:slope gradient,slope aspect,geomorphology,lithology,base level,surface roughness,earthquake intensity,fault proximity,drainage proximity,and road proximity.The parameters were converted into raster data format with a resolution of 25×25m2 pixels.Analysis of the GIS correlations shows that the highest earthquake-induced landslide hazard areas are mainly in the hills and in some of the moderately steep mountainous areas of central Dujiangyan.The highest hazard zone covers an area of 11.1% of the study area,and the density distribution of seismically-induced landslides was 3.025/km2 from the 2008 Wenchuan earthquake.The moderately hazardous areas are mainly distributed within the moderately steep mountainous regions of the northern and southeastern parts of the study area and the hills of the northeastern part;covering 32.0% of the study area and with a density distribution of 2.123/km2 resulting from the Wenchuan earthquake.The lowest hazard areas are mainly distributed in the topographically flat plain in the northeastern part and some of the relatively gently slopes in the moderately steep mountainous areas of the northern part of Dujiangyan and the surrounding area.The lowest hazard areas cover 56.9% of the study area and exhibited landslide densities of 0.941/km2 and less from the Wenchuan earthquake.The quality of the hazard map was validated using a comparison with the distribution of landslides that were cataloged as occurring from the Wenchuan earthquake.43.1% of the study area consists of high and moderate hazardous zones,and these regions include 83.5% of landslides caused by the Wenchuan earthquake.The successful analysis shows that the contributing weight model can be effective for earthquake-triggered landslide hazard appraisal.The model's results can provide the basis for risk management and regional planning is.展开更多
A large quantity of industrial hazardous wastes (IHWs) accumulates in the Three Gorges Region. This study found that approximately 15 000 t IHWs were piled in the region by October 2001. These IHWs came from various s...A large quantity of industrial hazardous wastes (IHWs) accumulates in the Three Gorges Region. This study found that approximately 15 000 t IHWs were piled in the region by October 2001. These IHWs came from various sources and were complex in composition, mostly toxic and difficult to be disposed. IHW is regarded as a potential threat to the ecological environment, water resources and survival of local residents. It is important and indispensable to dispose the waste properly. To meet the regulation requirements on the disposal of IHWs and to minimize environmental effects on the Three Gorges Region, a disposal strategy is proposed, according to which approximately 600 t of the IHWs can be disposed by chemical stabilization, incineration and other treatment measures, and the rest need be stockpiled in safe and reliable places situated above the 177 m impoundment line of the Three Gorges dam.展开更多
The preservation of historical and cultural heritage from seismic risk is a question of interest in Italy. However, too little has been done to deal with this problem. First of all, the seismic safety of cultural heri...The preservation of historical and cultural heritage from seismic risk is a question of interest in Italy. However, too little has been done to deal with this problem. First of all, the seismic safety of cultural heritage should be a topic of prevention. The research described in the paper presents a multi-approach procedure to address risk assessment of large-scale urban systems with the aim to contribute at the development of risk mitigation policies for historical centers buildings. The observation of the earthquakes effects in Italy clearly highlights the role of the high vulnerability of the existing building on the consequences in terms of casualties and damage, rather than the severity of seismic events, especially in historical contexts. Unlike the new buildings which should be planned and designed to respect seismic safety requirements, existing buildings require a careful safety assessment on the basis of their susceptibility to damage which depends on building techniques, past damage events, maintenance, changes, etc.展开更多
This study consists to the detection of cavities that could be present over abandoned mines of Albania with the use of SP (self potential) and ERT (electrical resistance tomography). In general, natural and artifi...This study consists to the detection of cavities that could be present over abandoned mines of Albania with the use of SP (self potential) and ERT (electrical resistance tomography). In general, natural and artificial cavities represent an important investigation target in geotechnical, environmental and scientific studies. These studies could be engineering, archaeological or speleological. For the detection and localization of such cavities during the last 20 years, several geophysical studies have been used worldwide. In this field study, several geophysical methods could be used such as electrical, electromagnetic, gravimetric and seismic ones. Now days, the ground penetrating radar technique and ERT are widely used. Depending on geological formation conditions every used method is more or less effective. As a result of actual conditions of works on ore mines, the dynamic regime of the surroundings areas has undergone changes creating superficial cavities and funnels and as consequence the geological risk to the community is present. The detection of cavities is a challenge for geophysicists and in these cases the ambiguity on interpretation of geophysical data has to be solved properly. The simultaneous application of different geophysical methods and monitoring in time are necessary in order that the field data interpretation could be significant. Geophysical investigations were carried out as tests over galleries of ore mines of Albania. In this study, we present the SP and ERT results in two sites, in Dhrovjan and Perrenjas region. The effectiveness of the used geophysical methods was present.展开更多
基金supported by the 973 Program of China (Grant No.2008CB425802)the International Cooperation Program of the Ministry of Science and Technology of China (Grant No.2007DFA21150 and 2009DFB20196)
文摘Earthquake-triggered landslides have aroused widespread attention because of their tremendous ability to harm people's lives and properties.The best way to avoid and mitigate their damage is to develop landslide hazard maps and make them available to the public in advance of an earthquake.Future construction can then be built according to the level of hazard and existing structures can be retrofit as necessary.During recent years various approaches have been made to develop landslide hazard maps using statistical analysis or physical models.However,these methods have limitations.This study introduces a new GIS-based approach,using the contributing weight model,to evaluate the hazard of seismically-induced landslides.In this study,the city and surrounding area of Dujiangyan was selected as the research area because of its moderate-high seismic activity.The parameters incorporated into the model that related to the probability of landslide occurrence were:slope gradient,slope aspect,geomorphology,lithology,base level,surface roughness,earthquake intensity,fault proximity,drainage proximity,and road proximity.The parameters were converted into raster data format with a resolution of 25×25m2 pixels.Analysis of the GIS correlations shows that the highest earthquake-induced landslide hazard areas are mainly in the hills and in some of the moderately steep mountainous areas of central Dujiangyan.The highest hazard zone covers an area of 11.1% of the study area,and the density distribution of seismically-induced landslides was 3.025/km2 from the 2008 Wenchuan earthquake.The moderately hazardous areas are mainly distributed within the moderately steep mountainous regions of the northern and southeastern parts of the study area and the hills of the northeastern part;covering 32.0% of the study area and with a density distribution of 2.123/km2 resulting from the Wenchuan earthquake.The lowest hazard areas are mainly distributed in the topographically flat plain in the northeastern part and some of the relatively gently slopes in the moderately steep mountainous areas of the northern part of Dujiangyan and the surrounding area.The lowest hazard areas cover 56.9% of the study area and exhibited landslide densities of 0.941/km2 and less from the Wenchuan earthquake.The quality of the hazard map was validated using a comparison with the distribution of landslides that were cataloged as occurring from the Wenchuan earthquake.43.1% of the study area consists of high and moderate hazardous zones,and these regions include 83.5% of landslides caused by the Wenchuan earthquake.The successful analysis shows that the contributing weight model can be effective for earthquake-triggered landslide hazard appraisal.The model's results can provide the basis for risk management and regional planning is.
文摘A large quantity of industrial hazardous wastes (IHWs) accumulates in the Three Gorges Region. This study found that approximately 15 000 t IHWs were piled in the region by October 2001. These IHWs came from various sources and were complex in composition, mostly toxic and difficult to be disposed. IHW is regarded as a potential threat to the ecological environment, water resources and survival of local residents. It is important and indispensable to dispose the waste properly. To meet the regulation requirements on the disposal of IHWs and to minimize environmental effects on the Three Gorges Region, a disposal strategy is proposed, according to which approximately 600 t of the IHWs can be disposed by chemical stabilization, incineration and other treatment measures, and the rest need be stockpiled in safe and reliable places situated above the 177 m impoundment line of the Three Gorges dam.
文摘The preservation of historical and cultural heritage from seismic risk is a question of interest in Italy. However, too little has been done to deal with this problem. First of all, the seismic safety of cultural heritage should be a topic of prevention. The research described in the paper presents a multi-approach procedure to address risk assessment of large-scale urban systems with the aim to contribute at the development of risk mitigation policies for historical centers buildings. The observation of the earthquakes effects in Italy clearly highlights the role of the high vulnerability of the existing building on the consequences in terms of casualties and damage, rather than the severity of seismic events, especially in historical contexts. Unlike the new buildings which should be planned and designed to respect seismic safety requirements, existing buildings require a careful safety assessment on the basis of their susceptibility to damage which depends on building techniques, past damage events, maintenance, changes, etc.
文摘This study consists to the detection of cavities that could be present over abandoned mines of Albania with the use of SP (self potential) and ERT (electrical resistance tomography). In general, natural and artificial cavities represent an important investigation target in geotechnical, environmental and scientific studies. These studies could be engineering, archaeological or speleological. For the detection and localization of such cavities during the last 20 years, several geophysical studies have been used worldwide. In this field study, several geophysical methods could be used such as electrical, electromagnetic, gravimetric and seismic ones. Now days, the ground penetrating radar technique and ERT are widely used. Depending on geological formation conditions every used method is more or less effective. As a result of actual conditions of works on ore mines, the dynamic regime of the surroundings areas has undergone changes creating superficial cavities and funnels and as consequence the geological risk to the community is present. The detection of cavities is a challenge for geophysicists and in these cases the ambiguity on interpretation of geophysical data has to be solved properly. The simultaneous application of different geophysical methods and monitoring in time are necessary in order that the field data interpretation could be significant. Geophysical investigations were carried out as tests over galleries of ore mines of Albania. In this study, we present the SP and ERT results in two sites, in Dhrovjan and Perrenjas region. The effectiveness of the used geophysical methods was present.