In early morning of Aug 8th, 2010, the rain-triggered tremendous debris flows broke out simultaneously at the Sanyanyu ravine and Luojiayu ravine, which locate in the north part of Zhouqu County town. The debris flow ...In early morning of Aug 8th, 2010, the rain-triggered tremendous debris flows broke out simultaneously at the Sanyanyu ravine and Luojiayu ravine, which locate in the north part of Zhouqu County town. The debris flow is the most severe event of the same kind of disasters in the past sixty years in China, which caused great losses of people's lives and properties. Based on field investigation, remote sensing image interpretation and analysis of local climatological data, the local topographical conditions, active tectonic movement, massive debris source and torrential rains were the main formation causes which induced the catastrophic debris flows. Moreover, detailed geological surveys were carried out following the disaster, the other geological potential hazard sites were found out, and the geological and seismic hazard assessment has been put into practice. At last, scientific and appropriate countermeasures have been suggested to prevent and mitigate the extraordinarily serious debris flow.展开更多
The East Kunlun fault zone is located in the northern margin of the Bayan Har block. The study of earthquake rupture behavior in the fault zone is of importance for understanding the future seismic risk in northwest S...The East Kunlun fault zone is located in the northern margin of the Bayan Har block. The study of earthquake rupture behavior in the fault zone is of importance for understanding the future seismic risk in northwest Sichuan. A number of geological field investigations, typical micro topography DGPS measurements and sample dating show that the earthquake activity of the East Kunlun fault zone extends to the north boundary of Zoige basin, a segment known as the Luocha segment of Tazang fault. In the satellite image, the segment is seen clearly as gray and yellow strips. The earthquake deformation zone mainly features fault scarp, valleys on the slope, offset gullies and terraces, linear distribution of plants, waterfall, fault spring, fault sag pond, and landslide, collapse and talus associated with surface rupturing. These phenomena are distributed intermittently along the re-existing fault and form a ~50km-long inverse L-shaped deformation zone. Fault activities caused left-lateral offset of gullies and terraces, with horizontal displacement concentrated at 5.5m^6m, 18m~23m, 68m~75m, and 200m~220m, respectively. The recent earthquake occurred between 340±30~500±30BP. The macro epicenter is located 5km~7km northwest of Benduo village, with magnitude of MW7.3~7.4, maximum coseismic displacement of 6m, horizontal displacement 5.5m~6m and vertical displacement 0.2m~0.5m, being in a proportion of 5∶1~10∶1. These phenomena show that the Tazang fault is the causative fault of this earthquake. The fault is a Holocene active fault and was dominated recently by left-lateral movement with a small amount of thrust component under compressive shear stress. This characteristic is similar to the movement in other segments of the East Kunlun fault zone. The results of this study support the "continental escape" model.展开更多
基金Foundation item: Projects(40902094, 50978239) supported by the National Natural Science Foundation of China Project(20121ESLZ01) supported by the Institute of Earthquake Prediction, China Earthquake Administration
文摘In early morning of Aug 8th, 2010, the rain-triggered tremendous debris flows broke out simultaneously at the Sanyanyu ravine and Luojiayu ravine, which locate in the north part of Zhouqu County town. The debris flow is the most severe event of the same kind of disasters in the past sixty years in China, which caused great losses of people's lives and properties. Based on field investigation, remote sensing image interpretation and analysis of local climatological data, the local topographical conditions, active tectonic movement, massive debris source and torrential rains were the main formation causes which induced the catastrophic debris flows. Moreover, detailed geological surveys were carried out following the disaster, the other geological potential hazard sites were found out, and the geological and seismic hazard assessment has been put into practice. At last, scientific and appropriate countermeasures have been suggested to prevent and mitigate the extraordinarily serious debris flow.
基金funded by the National 973 Project of China ( Grant No. 2008CB425701 )Basic Scientific Research Fund of Institute of Earthquake Science,CEA (No. 02092437)
文摘The East Kunlun fault zone is located in the northern margin of the Bayan Har block. The study of earthquake rupture behavior in the fault zone is of importance for understanding the future seismic risk in northwest Sichuan. A number of geological field investigations, typical micro topography DGPS measurements and sample dating show that the earthquake activity of the East Kunlun fault zone extends to the north boundary of Zoige basin, a segment known as the Luocha segment of Tazang fault. In the satellite image, the segment is seen clearly as gray and yellow strips. The earthquake deformation zone mainly features fault scarp, valleys on the slope, offset gullies and terraces, linear distribution of plants, waterfall, fault spring, fault sag pond, and landslide, collapse and talus associated with surface rupturing. These phenomena are distributed intermittently along the re-existing fault and form a ~50km-long inverse L-shaped deformation zone. Fault activities caused left-lateral offset of gullies and terraces, with horizontal displacement concentrated at 5.5m^6m, 18m~23m, 68m~75m, and 200m~220m, respectively. The recent earthquake occurred between 340±30~500±30BP. The macro epicenter is located 5km~7km northwest of Benduo village, with magnitude of MW7.3~7.4, maximum coseismic displacement of 6m, horizontal displacement 5.5m~6m and vertical displacement 0.2m~0.5m, being in a proportion of 5∶1~10∶1. These phenomena show that the Tazang fault is the causative fault of this earthquake. The fault is a Holocene active fault and was dominated recently by left-lateral movement with a small amount of thrust component under compressive shear stress. This characteristic is similar to the movement in other segments of the East Kunlun fault zone. The results of this study support the "continental escape" model.