文中提出一种将激光雷达和轮式里程计相融合的方法,用于提升SLAM (Simultaneous Localization and Mapping)算法前端点云配准效率和点云畸变矫正效果。在点云配准方面,对PL-ICP算法做出改进,首先对激光点云进行预处理去除无效点,再利用...文中提出一种将激光雷达和轮式里程计相融合的方法,用于提升SLAM (Simultaneous Localization and Mapping)算法前端点云配准效率和点云畸变矫正效果。在点云配准方面,对PL-ICP算法做出改进,首先对激光点云进行预处理去除无效点,再利用自适应体素滤波方法对激光点云进行下采样,在保留点云特征的同时将点云稀疏化,从而减少点云配准的计算量,利用轮式里程计的测量值为点云配准提供初值,提高点云配准的效率和定位效果。在点云畸变矫正方面,按照轮式里程计测量的机器人位姿的时间戳,利用拉格朗日线性插值法对点云配准配得到的机器人位姿进行线性插值,利用EKF算法融合轮式里程计测量的位姿和点云配准插值得到的位姿对轮式里程计的测量误差做出矫正,然后为激光点云提供运动补偿,从而去除点云畸变提升SLAM算法定位和建图效果。利用ROS搭建仿真环境验证了本文提出的算法的有效性。展开更多
煤矿智能化是煤炭行业高质量发展的技术支撑,关键岗位的机器人替代是实现煤炭少人化、无人化的高效开采的发展趋势。即时定位与地图构建(Simultaneous Localization and Mapping,SLAM)是煤矿机器人自主移动与导航的关键技术之一。煤矿...煤矿智能化是煤炭行业高质量发展的技术支撑,关键岗位的机器人替代是实现煤炭少人化、无人化的高效开采的发展趋势。即时定位与地图构建(Simultaneous Localization and Mapping,SLAM)是煤矿机器人自主移动与导航的关键技术之一。煤矿井下为典型非结构化环境,空间狭长局促,结构复杂多变,照明情况不均匀,对煤矿井下SLAM提出了严峻挑战。总结了煤矿井下地图构建研究现状,针对LeGO-LOAM算法的回环检测仍存在的不足,利用SegMatch算法改进LeGO-LOAM的回环检测模块,且使用ICP算法进行全局图优化,提出了一种融合LeGO-LOAM和SegMatch的改进算法,阐述了该算法的原理和实现步骤;开展了煤矿井下模拟场景试验,对比分析改进前后SLAM算法的建图效果以及精度,试验结果表明改进算法构建的地图回环效果更好,估计轨迹更平滑、精确;结合导航需求研究了二维占据栅格地图的构建方法,试验验证了该方法所构建的栅格地图精度,结果表明有效滤除动态障碍物等离群噪点后的栅格地图具有0.01 m的建图精度,且所需存储空间较点云地图降低了3个数量级。研究成果有助于煤矿井下非结构环境下SLAM和煤矿机器人实时定位和自主移动。展开更多
即时定位与地图构建(simultaneous localization and mapping,SLAM)是自主移动机器人和自动驾驶的关键技术之一,而激光雷达则是支撑SLAM算法运行的重要传感器。基于激光雷达的SLAM算法,对激光雷达SLAM总体框架进行介绍,详细阐述前端里...即时定位与地图构建(simultaneous localization and mapping,SLAM)是自主移动机器人和自动驾驶的关键技术之一,而激光雷达则是支撑SLAM算法运行的重要传感器。基于激光雷达的SLAM算法,对激光雷达SLAM总体框架进行介绍,详细阐述前端里程计、后端优化、回环检测、地图构建模块的作用并总结所使用的算法;按由2D到3D,单传感器到多传感器融合的顺序,对经典的具有代表性的开源算法进行描述和梳理归纳;介绍常用的开源数据集,以及精度评价指标和测评工具;从深度学习、多传感器融合、多机协同和鲁棒性研究四个维度对激光雷达SLAM技术的发展趋势进行展望。展开更多
文摘文中提出一种将激光雷达和轮式里程计相融合的方法,用于提升SLAM (Simultaneous Localization and Mapping)算法前端点云配准效率和点云畸变矫正效果。在点云配准方面,对PL-ICP算法做出改进,首先对激光点云进行预处理去除无效点,再利用自适应体素滤波方法对激光点云进行下采样,在保留点云特征的同时将点云稀疏化,从而减少点云配准的计算量,利用轮式里程计的测量值为点云配准提供初值,提高点云配准的效率和定位效果。在点云畸变矫正方面,按照轮式里程计测量的机器人位姿的时间戳,利用拉格朗日线性插值法对点云配准配得到的机器人位姿进行线性插值,利用EKF算法融合轮式里程计测量的位姿和点云配准插值得到的位姿对轮式里程计的测量误差做出矫正,然后为激光点云提供运动补偿,从而去除点云畸变提升SLAM算法定位和建图效果。利用ROS搭建仿真环境验证了本文提出的算法的有效性。
文摘煤矿智能化是煤炭行业高质量发展的技术支撑,关键岗位的机器人替代是实现煤炭少人化、无人化的高效开采的发展趋势。即时定位与地图构建(Simultaneous Localization and Mapping,SLAM)是煤矿机器人自主移动与导航的关键技术之一。煤矿井下为典型非结构化环境,空间狭长局促,结构复杂多变,照明情况不均匀,对煤矿井下SLAM提出了严峻挑战。总结了煤矿井下地图构建研究现状,针对LeGO-LOAM算法的回环检测仍存在的不足,利用SegMatch算法改进LeGO-LOAM的回环检测模块,且使用ICP算法进行全局图优化,提出了一种融合LeGO-LOAM和SegMatch的改进算法,阐述了该算法的原理和实现步骤;开展了煤矿井下模拟场景试验,对比分析改进前后SLAM算法的建图效果以及精度,试验结果表明改进算法构建的地图回环效果更好,估计轨迹更平滑、精确;结合导航需求研究了二维占据栅格地图的构建方法,试验验证了该方法所构建的栅格地图精度,结果表明有效滤除动态障碍物等离群噪点后的栅格地图具有0.01 m的建图精度,且所需存储空间较点云地图降低了3个数量级。研究成果有助于煤矿井下非结构环境下SLAM和煤矿机器人实时定位和自主移动。
文摘即时定位与地图构建(simultaneous localization and mapping,SLAM)是自主移动机器人和自动驾驶的关键技术之一,而激光雷达则是支撑SLAM算法运行的重要传感器。基于激光雷达的SLAM算法,对激光雷达SLAM总体框架进行介绍,详细阐述前端里程计、后端优化、回环检测、地图构建模块的作用并总结所使用的算法;按由2D到3D,单传感器到多传感器融合的顺序,对经典的具有代表性的开源算法进行描述和梳理归纳;介绍常用的开源数据集,以及精度评价指标和测评工具;从深度学习、多传感器融合、多机协同和鲁棒性研究四个维度对激光雷达SLAM技术的发展趋势进行展望。