视觉同步定位与建图技术常用于室内智能机器人的导航,但是其位姿是以静态环境为前提进行估计的。为了提升视觉即时定位与建图(Simultaneous Localization And Mapping,SLAM)在动态场景中的定位与建图的鲁棒性和实时性,在原ORB-SLAM2基...视觉同步定位与建图技术常用于室内智能机器人的导航,但是其位姿是以静态环境为前提进行估计的。为了提升视觉即时定位与建图(Simultaneous Localization And Mapping,SLAM)在动态场景中的定位与建图的鲁棒性和实时性,在原ORB-SLAM2基础上新增动态区域检测线程和语义点云线程。动态区域检测线程由实例分割网络和光流估计网络组成,实例分割赋予动态场景语义信息的同时生成先验性动态物体的掩膜。为了解决实例分割网络的欠分割问题,采用轻量级光流估计网络辅助检测动态区域,生成准确性更高的动态区域掩膜。将生成的动态区域掩膜传入到跟踪线程中进行实时剔除动态区域特征点,然后使用地图中剩余的静态特征点进行相机的位姿估计并建立语义点云地图。在公开TUM数据集上的实验结果表明,改进后的SLAM系统在保证实时性的前提下,提升了其在动态场景中的定位与建图的鲁棒性。展开更多
地下车库中纯视觉的即时定位与建图(simultaneous localization and mapping,SLAM)方法无法克服光线不足和弱特征纹理两大不利因素,为此,提出一种基于VINS-Mono框架下改进的视觉惯导融合算法,把原算法中提取Harris角点的方法改进为提取...地下车库中纯视觉的即时定位与建图(simultaneous localization and mapping,SLAM)方法无法克服光线不足和弱特征纹理两大不利因素,为此,提出一种基于VINS-Mono框架下改进的视觉惯导融合算法,把原算法中提取Harris角点的方法改进为提取灰度值陡变的像素点,并使用非线性优化方法在初始化阶段进行视觉位姿估计。后端采用滑动窗口的形式建立先验估计残差、惯性测量单元(inertial measurement unit,IMU)残差以及基于灰度值不变原理构建的视觉残差的联合残差模型,进一步提升了系统底层变量的优化效果,从而提高算法的定位准确度。通过基于EuRoc数据集的仿真实验和地下车库实际场景的实车实验,验证了所提算法的鲁棒性和精确性。展开更多
随着农业自动化技术的不断发展,无人施药船作为先进的水生养殖设备,逐渐得到广泛应用。文章采用视觉同步定位与建图(Simultaneous Localization and Mapping,SLAM)和光流法相结合的方法,提出一种提高无人施药船定位精度的方法。该方法...随着农业自动化技术的不断发展,无人施药船作为先进的水生养殖设备,逐渐得到广泛应用。文章采用视觉同步定位与建图(Simultaneous Localization and Mapping,SLAM)和光流法相结合的方法,提出一种提高无人施药船定位精度的方法。该方法能够有效提高无人施药船的定位精度和自主导航能力,具有广阔的应用前景,有助于提升农业生产的效率。展开更多
为解决智能车在未知地下车库环境,由于单独使用二维激光雷达点云信息的数量有限,当存在动态障碍物时位姿匹配容易产生误匹配导致定位与建图精度降低的问题,提出了一种根据光照加权的扩展卡尔曼滤波算法将RGB-D相机的视觉信息和二维激光...为解决智能车在未知地下车库环境,由于单独使用二维激光雷达点云信息的数量有限,当存在动态障碍物时位姿匹配容易产生误匹配导致定位与建图精度降低的问题,提出了一种根据光照加权的扩展卡尔曼滤波算法将RGB-D相机的视觉信息和二维激光雷达的点云信息进行融合。首先,采用改进的IMLS-ICP(implicit moving least square-iterative closest point)算法对激光点云数据进行处理以得到更高的匹配精度;然后,针对视觉匹配算法较慢的问题,采用ORB(oriented FAST and rotated bRIEF)算法对直方图均衡化滤波优化后的图像进行处理来加快图像处理的速度与特征匹配的精度;采用视觉词袋模型进行回环检测来重定位以减少累计误差的影响;最后,通过搭建的汽车实验平台进行车库实验,验证了采用该方法能够得到更高的定位精度和更加准确的建图效果,提高了系统的鲁棒性。展开更多
介绍了同步定位与建图(Simultaneous Localizaton And Mapping,SLAM)问题的数学模型,对基于扩展卡尔曼滤波的SLAM算法进行了详细的介绍给出了非线性优化SLAM方法的代价函数。最后,对利用神经网络拟合扩展卡尔曼滤波器与非线性系统误差...介绍了同步定位与建图(Simultaneous Localizaton And Mapping,SLAM)问题的数学模型,对基于扩展卡尔曼滤波的SLAM算法进行了详细的介绍给出了非线性优化SLAM方法的代价函数。最后,对利用神经网络拟合扩展卡尔曼滤波器与非线性系统误差的方法进行了介绍并对SLAM领域与深度学习的结合做出了展望。展开更多
文摘视觉同步定位与建图技术常用于室内智能机器人的导航,但是其位姿是以静态环境为前提进行估计的。为了提升视觉即时定位与建图(Simultaneous Localization And Mapping,SLAM)在动态场景中的定位与建图的鲁棒性和实时性,在原ORB-SLAM2基础上新增动态区域检测线程和语义点云线程。动态区域检测线程由实例分割网络和光流估计网络组成,实例分割赋予动态场景语义信息的同时生成先验性动态物体的掩膜。为了解决实例分割网络的欠分割问题,采用轻量级光流估计网络辅助检测动态区域,生成准确性更高的动态区域掩膜。将生成的动态区域掩膜传入到跟踪线程中进行实时剔除动态区域特征点,然后使用地图中剩余的静态特征点进行相机的位姿估计并建立语义点云地图。在公开TUM数据集上的实验结果表明,改进后的SLAM系统在保证实时性的前提下,提升了其在动态场景中的定位与建图的鲁棒性。
文摘随着农业自动化技术的不断发展,无人施药船作为先进的水生养殖设备,逐渐得到广泛应用。文章采用视觉同步定位与建图(Simultaneous Localization and Mapping,SLAM)和光流法相结合的方法,提出一种提高无人施药船定位精度的方法。该方法能够有效提高无人施药船的定位精度和自主导航能力,具有广阔的应用前景,有助于提升农业生产的效率。
文摘为解决智能车在未知地下车库环境,由于单独使用二维激光雷达点云信息的数量有限,当存在动态障碍物时位姿匹配容易产生误匹配导致定位与建图精度降低的问题,提出了一种根据光照加权的扩展卡尔曼滤波算法将RGB-D相机的视觉信息和二维激光雷达的点云信息进行融合。首先,采用改进的IMLS-ICP(implicit moving least square-iterative closest point)算法对激光点云数据进行处理以得到更高的匹配精度;然后,针对视觉匹配算法较慢的问题,采用ORB(oriented FAST and rotated bRIEF)算法对直方图均衡化滤波优化后的图像进行处理来加快图像处理的速度与特征匹配的精度;采用视觉词袋模型进行回环检测来重定位以减少累计误差的影响;最后,通过搭建的汽车实验平台进行车库实验,验证了采用该方法能够得到更高的定位精度和更加准确的建图效果,提高了系统的鲁棒性。
文摘介绍了同步定位与建图(Simultaneous Localizaton And Mapping,SLAM)问题的数学模型,对基于扩展卡尔曼滤波的SLAM算法进行了详细的介绍给出了非线性优化SLAM方法的代价函数。最后,对利用神经网络拟合扩展卡尔曼滤波器与非线性系统误差的方法进行了介绍并对SLAM领域与深度学习的结合做出了展望。