As one of the most common medical diagnosis methods, urinalysis is a highly demanded technique for screening tests or daily monitoring of various diseases. With the rapid development of POC(point-of-care) systems, a c...As one of the most common medical diagnosis methods, urinalysis is a highly demanded technique for screening tests or daily monitoring of various diseases. With the rapid development of POC(point-of-care) systems, a convenient house-using urinalysis device is widely needed. However, considering the difference of onboard systems and multiple test indicators in urinalysis, the design of such an intelligent device is still challenging. In this paper, a smartphone-based portable urinalysis system has been developed and applied for the colorimetric analysis of routine urine examination indices using an Android app. By integrating the test paper sensor in the portable device for urinalysis,our system significantly improves the instability of conventional dipstick-based manual colorimetry, and the smartphone application used for color discrimination enhances the accuracy of the visual assessment of sample strips. Using a simple operation approach that takes ~ 2 min per test, our system can be applied as rapid urinalysis for routine check-ups.展开更多
Lysosomes function as important organelles within cells and their movement associates with diverse biological events, hence the real-time tracking of lysosomal movement is of great significance. However, since most ly...Lysosomes function as important organelles within cells and their movement associates with diverse biological events, hence the real-time tracking of lysosomal movement is of great significance. However, since most ly so some fluorescent probes suffer from relatively unsatisfactory photo stability,tracking lysosomal movement in real-time remains challenging. Here,we report that a naphthalimide-based fluorescent compound,namely NIMS,is a quite promising probe for ly so some imaging. The visualizing mechanism lies in the selective accumulation of NIMS in lysosomes via a protonation reaction, followed by the fluorescence enhancement due to the interactions of NIMS with proteins. Owing to its high selectivity and good photo stability, NIMS was successfully applied to capture super-resolution fluorescence images of lysosomes. More importantly, real-time tracking of ly so some movement in a single living cell by NIMS was realized with a confocal laser scanning microscope. Surprisingly,even in normal culture conditions, around 2/3 of the captured lysosomes were observed to move within 5 min, indicative of the highly dynamic features of lysosomes. Thus, this probe may facilitate the understanding of the ly so some dynamics in physiologicalor pathological conditions.展开更多
基金Projects(61922093,U1813211) supported by the National Natural Science Foundation of ChinaProjects(SGDX20201103093003017,JCYJ20200109114827177) supported by Shenzhen Key Basic Research Project,China。
文摘As one of the most common medical diagnosis methods, urinalysis is a highly demanded technique for screening tests or daily monitoring of various diseases. With the rapid development of POC(point-of-care) systems, a convenient house-using urinalysis device is widely needed. However, considering the difference of onboard systems and multiple test indicators in urinalysis, the design of such an intelligent device is still challenging. In this paper, a smartphone-based portable urinalysis system has been developed and applied for the colorimetric analysis of routine urine examination indices using an Android app. By integrating the test paper sensor in the portable device for urinalysis,our system significantly improves the instability of conventional dipstick-based manual colorimetry, and the smartphone application used for color discrimination enhances the accuracy of the visual assessment of sample strips. Using a simple operation approach that takes ~ 2 min per test, our system can be applied as rapid urinalysis for routine check-ups.
基金supported by the National Key Basic Research Program of China(2013CB933903)National Natural Science Foundation of China(81621003,21372168,24672156,51173117,51573108)
文摘Lysosomes function as important organelles within cells and their movement associates with diverse biological events, hence the real-time tracking of lysosomal movement is of great significance. However, since most ly so some fluorescent probes suffer from relatively unsatisfactory photo stability,tracking lysosomal movement in real-time remains challenging. Here,we report that a naphthalimide-based fluorescent compound,namely NIMS,is a quite promising probe for ly so some imaging. The visualizing mechanism lies in the selective accumulation of NIMS in lysosomes via a protonation reaction, followed by the fluorescence enhancement due to the interactions of NIMS with proteins. Owing to its high selectivity and good photo stability, NIMS was successfully applied to capture super-resolution fluorescence images of lysosomes. More importantly, real-time tracking of ly so some movement in a single living cell by NIMS was realized with a confocal laser scanning microscope. Surprisingly,even in normal culture conditions, around 2/3 of the captured lysosomes were observed to move within 5 min, indicative of the highly dynamic features of lysosomes. Thus, this probe may facilitate the understanding of the ly so some dynamics in physiologicalor pathological conditions.