期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于近端凸差分方法的多层卷积变换学习算法 被引量:1
1
作者 郭泳澄 唐健浩 +1 位作者 李珍妮 吕俊 《控制理论与应用》 EI CAS CSCD 北大核心 2023年第11期2019-2027,共9页
卷积变换学习(CTL)结合了无监督学习与卷积神经网络的优点,通过无监督的方式训练卷积核,是一种新兴的稀疏表示方法.现有的单层CTL模型仅通过一层稀疏编码,不仅难以有效提取输入信号的深层语义信息,并且,基于l0范数的CTL模型得到的稀疏... 卷积变换学习(CTL)结合了无监督学习与卷积神经网络的优点,通过无监督的方式训练卷积核,是一种新兴的稀疏表示方法.现有的单层CTL模型仅通过一层稀疏编码,不仅难以有效提取输入信号的深层语义信息,并且,基于l0范数的CTL模型得到的稀疏解虽然稀疏度强,但它的求解是一个NP-hard难题,而基于l1范数的CTL模型则存在稀疏度不足和参数过度惩罚的问题.针对以上问题,本文提出了一种基于log正则化函数的多层CTL模型(CTLlog):为了提取输入信号更具鉴别性与丰富语义的稀疏特征,对单层的CTL模型进行多层拓展,同时使用稀疏度强,偏差性小的非凸log正则化函数作为CTL模型的稀疏约束方法.通过使用近端凸差分方法对模型的非凸优化问题进行优化求解,开发出基于近端凸差分方法的多层卷积变换学习算法.实验表明,本文提出的基于近端凸差分方法的多层卷积变换学习算法所使用的log正则化稀疏约束效果优于现有的CTL模型,且多层CTL-log的特征提取效果相较于单层取得了提升,在支持向量机(SVM)分类器的分类精度提升了2个百分点左右. 展开更多
关键词 稀疏表示 卷积变换学习 近端凸差分方法 log正则化 特征提取 机器学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部