期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于近端凸差分方法的多层卷积变换学习算法
被引量:
1
1
作者
郭泳澄
唐健浩
+1 位作者
李珍妮
吕俊
《控制理论与应用》
EI
CAS
CSCD
北大核心
2023年第11期2019-2027,共9页
卷积变换学习(CTL)结合了无监督学习与卷积神经网络的优点,通过无监督的方式训练卷积核,是一种新兴的稀疏表示方法.现有的单层CTL模型仅通过一层稀疏编码,不仅难以有效提取输入信号的深层语义信息,并且,基于l0范数的CTL模型得到的稀疏...
卷积变换学习(CTL)结合了无监督学习与卷积神经网络的优点,通过无监督的方式训练卷积核,是一种新兴的稀疏表示方法.现有的单层CTL模型仅通过一层稀疏编码,不仅难以有效提取输入信号的深层语义信息,并且,基于l0范数的CTL模型得到的稀疏解虽然稀疏度强,但它的求解是一个NP-hard难题,而基于l1范数的CTL模型则存在稀疏度不足和参数过度惩罚的问题.针对以上问题,本文提出了一种基于log正则化函数的多层CTL模型(CTLlog):为了提取输入信号更具鉴别性与丰富语义的稀疏特征,对单层的CTL模型进行多层拓展,同时使用稀疏度强,偏差性小的非凸log正则化函数作为CTL模型的稀疏约束方法.通过使用近端凸差分方法对模型的非凸优化问题进行优化求解,开发出基于近端凸差分方法的多层卷积变换学习算法.实验表明,本文提出的基于近端凸差分方法的多层卷积变换学习算法所使用的log正则化稀疏约束效果优于现有的CTL模型,且多层CTL-log的特征提取效果相较于单层取得了提升,在支持向量机(SVM)分类器的分类精度提升了2个百分点左右.
展开更多
关键词
稀疏表示
卷积变换学习
近端凸差分方法
log正则化
特征提取
机器
学习
下载PDF
职称材料
题名
基于近端凸差分方法的多层卷积变换学习算法
被引量:
1
1
作者
郭泳澄
唐健浩
李珍妮
吕俊
机构
广东工业大学自动化学院
广东省物联网信息技术重点实验室
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2023年第11期2019-2027,共9页
基金
国家自然科学基金项目(62073086)
广东省自然科学基金项目(2022A1515011445)资助。
文摘
卷积变换学习(CTL)结合了无监督学习与卷积神经网络的优点,通过无监督的方式训练卷积核,是一种新兴的稀疏表示方法.现有的单层CTL模型仅通过一层稀疏编码,不仅难以有效提取输入信号的深层语义信息,并且,基于l0范数的CTL模型得到的稀疏解虽然稀疏度强,但它的求解是一个NP-hard难题,而基于l1范数的CTL模型则存在稀疏度不足和参数过度惩罚的问题.针对以上问题,本文提出了一种基于log正则化函数的多层CTL模型(CTLlog):为了提取输入信号更具鉴别性与丰富语义的稀疏特征,对单层的CTL模型进行多层拓展,同时使用稀疏度强,偏差性小的非凸log正则化函数作为CTL模型的稀疏约束方法.通过使用近端凸差分方法对模型的非凸优化问题进行优化求解,开发出基于近端凸差分方法的多层卷积变换学习算法.实验表明,本文提出的基于近端凸差分方法的多层卷积变换学习算法所使用的log正则化稀疏约束效果优于现有的CTL模型,且多层CTL-log的特征提取效果相较于单层取得了提升,在支持向量机(SVM)分类器的分类精度提升了2个百分点左右.
关键词
稀疏表示
卷积变换学习
近端凸差分方法
log正则化
特征提取
机器
学习
Keywords
sparse representation
convolutional transform learning
proximal difference of convex algorithm
log regularizer
feature extraction
machine learning
分类号
TP18 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于近端凸差分方法的多层卷积变换学习算法
郭泳澄
唐健浩
李珍妮
吕俊
《控制理论与应用》
EI
CAS
CSCD
北大核心
2023
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部