期刊文献+
共找到135篇文章
< 1 2 7 >
每页显示 20 50 100
基于对称卷积块网络和原型校准的小样本学习方法
1
作者 刘帅 白雪飞 高小方 《计算机科学》 CSCD 北大核心 2024年第11期182-190,共9页
针对基于原型网络的小样本学习模型泛化能力不足以及由少量样本得到的类原型不准确等问题,提出一种新的小样本学习方法。首先采用一个由双向卷积块注意力模块和残差块构成的对称网络SCB-Net对图像不同深度的特征进行自适应学习,从而提... 针对基于原型网络的小样本学习模型泛化能力不足以及由少量样本得到的类原型不准确等问题,提出一种新的小样本学习方法。首先采用一个由双向卷积块注意力模块和残差块构成的对称网络SCB-Net对图像不同深度的特征进行自适应学习,从而提取到更具代表性的类别特征表示,以有效提高模型的泛化能力;其次提出了一种反欧氏标签传播原型校准算法IELP-PC,利用伪标签策略扩充支持集样本;最后在支持集样本上采用反欧氏距离加权对类原型进行校准,进而提高模型的分类精度。在两个常用数据集mini-ImageNet和tiered-ImageNet上进行了实验,结果验证了所提方法的有效性,与基线模型相比,其在5-way 1-shot上分别提高了6.44%和7.83%,在5-way 5-shot上分别提高了2.68%和2.02%。 展开更多
关键词 原型网络 小样本学习 对称卷积块网络 原型校准 反欧氏距离
下载PDF
结合多尺度卷积块与密集卷积块的遥感图像融合
2
作者 侯林昊 刘帆 《计算机科学》 CSCD 北大核心 2024年第S01期397-402,共6页
遥感图像融合的目的在于获得与多光谱图像相同光谱分辨率和与全色图像相同空间分辨率的高分辨率多光谱图像。尽管深度学习在遥感图像融合方面取得了显著的成果,但由于深度模型网络的限制,网络无法充分提取图像中丰富的空间信息,导致融... 遥感图像融合的目的在于获得与多光谱图像相同光谱分辨率和与全色图像相同空间分辨率的高分辨率多光谱图像。尽管深度学习在遥感图像融合方面取得了显著的成果,但由于深度模型网络的限制,网络无法充分提取图像中丰富的空间信息,导致融合图像空间信息缺失,融合结果质量低。因此引入了多尺度块,不同尺度的图像特征可以通过不同大小的卷积核学习,从而增加提取特征的丰富性。随后引入了密集卷积块,通过密集连接来达到特征重用的目的,在网络较深时减少了浅层特征信息的丢失。在特征融合阶段,所提方法将网络不同层次的特征图作为特征融合层的输入,提高融合图像的质量。在GE1数据集以及QB数据集上与6种融合算法进行对比实验,实验结果表明所提方法的融合图像更好地保留了空间信息与光谱信息,在主观和客观评价上均优于对比方法。 展开更多
关键词 遥感图像融合 深度学习 多光谱图像 多尺度卷积块 密集连接
下载PDF
基于WGAN-GP和高效卷积块注意力机制IPOA-ICNN的变压器故障诊断
3
作者 鲍克勤 谈浩冬 《水电能源科学》 北大核心 2024年第10期190-195,共6页
针对目前变压器故障诊断采集到的故障样本存在数据不平衡、特征信息提取不足的问题,提出了一种基于数据增强型和高效卷积块注意力机制(ECBAM)优化一维改进卷积神经网络(1D-ICNN)的变压器故障诊断方法。首先,建立一个基于Wasserstein梯... 针对目前变压器故障诊断采集到的故障样本存在数据不平衡、特征信息提取不足的问题,提出了一种基于数据增强型和高效卷积块注意力机制(ECBAM)优化一维改进卷积神经网络(1D-ICNN)的变压器故障诊断方法。首先,建立一个基于Wasserstein梯度惩罚生成对抗网络(WGAN-GP),对不平衡的变压器数据样本进行训练以生成合成样本,用于数据增强,并采用方差分析法选取关联性强的气体特征参量;其次,使用残差和高效卷积块注意力机制模块对重构的平衡样本进行更为细节的特征提取,以实现故障诊断网络的分类;最后,利用改进的鹈鹕优化算法(IPOA)对ICNN参数进行寻优。算例对比分析表明,所提算法的故障诊断性能具备更高的精确度和稳定性,验证了所提模型故障诊断分类性能的有效性。 展开更多
关键词 变压器故障诊断 数据增强 高效卷积块注意力机制 鹈鹕优化算法
下载PDF
基于可融合残差卷积块的深度神经网络模型层剪枝方法 被引量:1
4
作者 徐鹏涛 曹健 +3 位作者 孙文宇 李普 王源 张兴 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第5期801-807,共7页
针对当前主流的剪枝方法所获得的压缩模型推理时间较长和效果较差的问题,提出一种易用且性能优异的层剪枝方法。该方法将原始卷积层转化为可融合残差卷积块,然后通过稀疏化训练的方法实现层剪枝,得到一种具有工程易用性的层剪枝方法,兼... 针对当前主流的剪枝方法所获得的压缩模型推理时间较长和效果较差的问题,提出一种易用且性能优异的层剪枝方法。该方法将原始卷积层转化为可融合残差卷积块,然后通过稀疏化训练的方法实现层剪枝,得到一种具有工程易用性的层剪枝方法,兼具推理时间短和剪枝效果好的优点。实验结果表明,在图像分类任务和目标检测任务中,该方法可使模型在精度损失较小的情况下获得极高的压缩率,优于先进的卷积核剪枝方法。 展开更多
关键词 卷积神经网络 层剪枝 可融合残差卷积块 稀疏化训练 图像分类
下载PDF
基于卷积块注意力模块的图像描述生成模型 被引量:1
5
作者 余海波 陈金广 《计算机系统应用》 2021年第8期194-200,共7页
图像描述生成模型是使用自然语言描述图片的内容及其属性之间关系的算法模型.对现有模型描述质量不高、图片重要部分特征提取不足和模型过于复杂的问题进行了研究,提出了一种基于卷积块注意力机制模块(CBAM)的图像描述生成模型.该模型... 图像描述生成模型是使用自然语言描述图片的内容及其属性之间关系的算法模型.对现有模型描述质量不高、图片重要部分特征提取不足和模型过于复杂的问题进行了研究,提出了一种基于卷积块注意力机制模块(CBAM)的图像描述生成模型.该模型采用编码器-解码器结构,在特征提取网络Inception-v4中加入CBAM,并作为编码器提取图片的重要特征信息,将其送入解码器长短期记忆网络(LSTM)中,生成对应图片的描述语句.采用MSCOCO2014数据集中训练集和验证集进行训练和测试,使用多个评价准则评估模型的准确性.实验结果表明,改进后模型的评价准则得分优于其他模型,其中Model2实验能够更好地提取到图像特征,生成更加准确的描述. 展开更多
关键词 图像描述生成 卷积块注意力模 卷积神经网络 长短期记忆网络
下载PDF
基于卷积块注意力模块和双向特征金字塔网络的接触网支持装置检测方法研究 被引量:2
6
作者 冯新伟 黄宇祥 王忠立 《铁道技术监督》 2023年第4期16-24,共9页
接触网支持装置是接触网悬挂状态检测监测图像分析的关键对象,对支持装置零部件的检测定位是实现缺陷自动分析的基础。针对接触网支持装置零部件种类多、尺寸差异大、存在遮挡、部分零部件相似度高等问题,提出一种融合卷积块注意力模块(... 接触网支持装置是接触网悬挂状态检测监测图像分析的关键对象,对支持装置零部件的检测定位是实现缺陷自动分析的基础。针对接触网支持装置零部件种类多、尺寸差异大、存在遮挡、部分零部件相似度高等问题,提出一种融合卷积块注意力模块(convolutional block attention module,CBAM)和双向特征金字塔网络(bidirectional feature pyramid network,BiFPN)的接触网支持装置检测方法。在YOLO v5s网络模型基础上,该方法通过CBAM增强接触网支持装置的特征提取,结合BiFPN,实现不同零部件分辨率特征图的融合。利用4C装置获得的图像数据集,开展验证试验。试验结果表明,相对YOLO v5s网络模型,融合CBAM和BiFPN的接触网支持装置检测方法,网络平均精度mAP@0.5提高2.12%;能显著提升小目标检测效果,提高定位的准确性和稳定性,对接触网状态的智能分析有重要意义。 展开更多
关键词 接触网 支持装置 检测方法 卷积块注意力模 双向特征金字塔网络
下载PDF
引入卷积块注意力模块的YOLOv5网络在地铁车辆一系弹簧断裂检测中的应用
7
作者 江现昌 邹庆春 +1 位作者 李翔泽 王静 《铁道技术监督》 2023年第10期29-33,共5页
作为地铁车辆关键部件的一系弹簧会发生断裂,威胁列车运行安全。由于一系弹簧断裂的位置、形状不同,并且断裂位置常常被遮挡,使得采用目标检测方法检测时,目标面积较小。对于小目标,采用的基于深度学习的目标检测方法检测难以达到好的... 作为地铁车辆关键部件的一系弹簧会发生断裂,威胁列车运行安全。由于一系弹簧断裂的位置、形状不同,并且断裂位置常常被遮挡,使得采用目标检测方法检测时,目标面积较小。对于小目标,采用的基于深度学习的目标检测方法检测难以达到好的效果。针对这一问题,在YOLOv5网络的基础上加以改进,加入更小的初始检测锚框,并且在主干网络加入空间和通道注意力模块。对比试验结果表明,改进后平均准确率提高3%,有效提高了小目标的检测能力。 展开更多
关键词 地铁动车组 转向架 一系弹簧 YOLOv5算法 卷积块注意力模 注意力机制 目标检测
下载PDF
基于集成改进卷积注意力块的SAR图像目标分类算法 被引量:1
8
作者 孙靖森 李宗豫 +3 位作者 杨森 钟芝怡 艾加秋 史骏 《海军航空大学学报》 2024年第4期445-452,共8页
在合成孔径雷达(Synthetic Aperture Radar,SAR)图像中,目标的轮廓和细节通常比较复杂。传统的卷积神经网络(Convolutional Neural Network,CNN)只使用单一均值参数进行无差别的特征提取,不能很好地区分SAR特征之间的差异。为了解决此问... 在合成孔径雷达(Synthetic Aperture Radar,SAR)图像中,目标的轮廓和细节通常比较复杂。传统的卷积神经网络(Convolutional Neural Network,CNN)只使用单一均值参数进行无差别的特征提取,不能很好地区分SAR特征之间的差异。为了解决此问题,文章提出了1种基于集成改进卷积注意力块(Improved Convolutional Block Attention Module,ICBAM)的SAR图像目标分类算法ICBAM_CNN。首先,该模块通过引入方差参数至传统CBAM模块中,设计了1种改进的CBAM注意力机制,有助于分类识别网络更好地学习SAR图像不同目标卷积层输出与通道注意力之间的差异信息,提升不同SAR目标特征的可分离性;然后,ICBAM设计了1种中心坐标注意力机制,能更好地捕捉SAR图像中目标的中心分布特征,有效抑制杂波对SAR目标分类影像的干扰;最后,为了提高效率,将改进后的ICBAM模块集成到CNN网络中,实现SAR图像目标分类。ICBAM_CNN深度融合了SAR图像目标的多层级特征,提升了SAR目标特征的可分离性,可实现SAR图像目标的高精度、高效率识别分类。通过MSTAR数据集进行实验,结果表明,相比于传统CBAM方法,改进ICBAM方法的精确率提升了2.44%,召回率提升了2.24%,F1-score提升了2.34%。 展开更多
关键词 SAR图像目标分类 改进卷积注意力 集成ICBAM的CNN网络 中心坐标注意力机制 多层级特征融合
下载PDF
基于混合空洞卷积和注意力多尺度网络的残饵密度估计
9
作者 张丽珍 李延天 +3 位作者 李志坚 孟雄栋 张永琪 吴迪 《农业工程学报》 EI CAS CSCD 北大核心 2024年第14期137-145,共9页
及时、准确地估算饵料盘中残留饲料量是提高养殖效益的重要措施。针对虾类养殖场景下残饵检测模型复杂度高、计数精度低的问题,提出了一种基于混合空洞卷积和注意力多尺度网络(hybrid dilated convolution and attention multi-scale ne... 及时、准确地估算饵料盘中残留饲料量是提高养殖效益的重要措施。针对虾类养殖场景下残饵检测模型复杂度高、计数精度低的问题,提出了一种基于混合空洞卷积和注意力多尺度网络(hybrid dilated convolution and attention multi-scale network,HAMNet)的残饵密度估计方法。首先,借鉴MCNN(multi-column convolutional neural network)多列架构的思想设计并行卷积块(parallel convolution block,PCB),使网络在单列架构中提取多种尺度的残饵特征,简化了网络结构并减轻了计算量;同时为了弥补网络结构简化造成残饵特征表示能力略有不足的问题,引入混合空洞卷积块(hybrid dilated convolution block,HDCB)避免信息丢失并增大感受野,增强模型深入挖掘多尺度残饵信息的能力。其次,在网络中嵌入通道注意力机制(channel attention mechanism,CAM),利用通道之间的相互依赖性重新校准有用特征信息的权重,凸显目标与背景的差异性。最后,针对下采样导致密度图质量差的问题,应用可学习的转置卷积恢复特征图细节信息,进而提升模型计数性能。利用饵料盘条件下采集的残饵图像进行了验证,试验结果表明,与基准模型MCNN相比,HAMNet模型的平均绝对误差、均方根误差和计算量分别降低了44.4%、40.8%和13.7%,参数量仅为0.52 MB。与经典密度估计模型CMTL(cascaded multi-task learning)、SANet(scale aggregation network)、CSRNet(congested scene recognition network)相比,该模型在各项性能指标上保持了最佳平衡,明显处于优势。该研究可为人工智能在水产养殖中快速量化残饵提供参考。 展开更多
关键词 水产养殖 模型 残饵 密度估计 并行卷积块 混合空洞卷积 通道注意力机制 转置卷积
下载PDF
嵌入双尺度分离式卷积块注意力模块的口罩人脸姿态分类 被引量:2
10
作者 陈森楸 刘文波 张弓 《中国图象图形学报》 CSCD 北大核心 2022年第4期1125-1136,共12页
目的针对口罩遮挡的人脸姿态分类新需求,为了提高基于卷积神经网络的人脸姿态分类效率和准确率,提出了一个轻量级卷积神经网络用于口罩人脸姿态分类。方法本文设计的轻量级卷积神经网络的核心为双尺度可分离注意力卷积单元。该卷积单元... 目的针对口罩遮挡的人脸姿态分类新需求,为了提高基于卷积神经网络的人脸姿态分类效率和准确率,提出了一个轻量级卷积神经网络用于口罩人脸姿态分类。方法本文设计的轻量级卷积神经网络的核心为双尺度可分离注意力卷积单元。该卷积单元由3×3和5×5两个尺度的深度可分离卷积并联而成,并且将卷积块注意力模块(convolutional block attention module,CBAM)的空间注意力模块(spatial attention module,SAM)和通道注意力模块(channel attention module,CAM)分别嵌入深度(depthwise,DW)卷积和点(pointwise,PW)卷积中,针对性地对DW卷积及PW卷积的特征图进行调整。同时对SAM模块补充1×1的点卷积挤压结果增强其对空间信息的利用,形成更加有效的注意力图。在保证模型性能的前提下,控制构建网络的卷积单元通道数和单元数,并丢弃全连接层,采用卷积层替代,进一步轻量化网络模型。结果实验结果表明,本文模型的准确率较未改进SAM模块分离嵌入CBAM的模型、标准方式嵌入CBAM的模型和未嵌入注意力模块的模型分别提升了2.86%、6.41%和12.16%。采用双尺度卷积核丰富特征,在有限的卷积单元内增强特征提取能力。与经典卷积神经网络对比,本文设计的模型仅有1.02 MB的参数量和24.18 MB的每秒浮点运算次数(floating-point operations per second,FLOPs),大幅轻量化了模型并能达到98.57%的准确率。结论本文设计了一个轻量高效的卷积单元构建网络模型,该模型具有较高的准确率和较低的参数量及计算复杂度,提高了口罩人脸姿态分类模型的效率和准确率。 展开更多
关键词 轻量级卷积神经网络 口罩人脸姿态分类 深度可分离卷积 卷积块注意力模(CBAM) 深度学习 新冠肺炎(COVID-19)
原文传递
改进深度学习块卷积神经网络的人脸表情识别 被引量:11
11
作者 何永强 秦勤 王俊鹏 《计算机工程与设计》 北大核心 2019年第3期850-855,共6页
设计一种改进的块卷积神经网络架构,并结合主动形状模型和局部二元模式映射实现人脸表情识别。采用主动形状模型定位人脸关键点,实现人脸姿态校正和感兴趣区域抽取;对校正后的图像进行局部二元模式映射,降低光照干扰;设计改进的卷积神... 设计一种改进的块卷积神经网络架构,并结合主动形状模型和局部二元模式映射实现人脸表情识别。采用主动形状模型定位人脸关键点,实现人脸姿态校正和感兴趣区域抽取;对校正后的图像进行局部二元模式映射,降低光照干扰;设计改进的卷积神经网络架构,对局部二元模式图像和感兴趣区域两个输入项进行学习和训练,建立分类器并实现人脸表情分类。人脸表情识别实验结果表明,该方法识别率高,运算效率较高。 展开更多
关键词 人脸表情识别 卷积神经网络 主动形状模型 局部二元模式 感兴趣区域池化
下载PDF
基于空洞卷积块架构的命名实体识别模型
12
作者 袁钺 王艳丽 刘勘 《山东大学学报(工学版)》 CAS CSCD 北大核心 2022年第6期105-114,共10页
受到空洞卷积的启发提出面向二维文本嵌入的列式空洞卷积,设计空洞卷积块架构,基于此架构提出命名实体识别模型并开展进一步试验。在命名实体识别试验中,提出的模型的精密度、召回率和F_(1)超越了其他基线模型,分别达到了0.9187、0.8794... 受到空洞卷积的启发提出面向二维文本嵌入的列式空洞卷积,设计空洞卷积块架构,基于此架构提出命名实体识别模型并开展进一步试验。在命名实体识别试验中,提出的模型的精密度、召回率和F_(1)超越了其他基线模型,分别达到了0.9187、0.8794和0.8986,表明空洞卷积块架构能够获取包含更多上下文信息的文本特征,从而支持模型对上下文长距离依赖特征的捕获和处理。感受野试验表明需要适当调整空洞率以减轻空洞卷积给模型带来的“网格效应”。提出的基于空洞卷积块架构能有效执行命名实体识别任务。 展开更多
关键词 命名实体识别 空洞卷积块架构 感受野 神经网络 深度学习
原文传递
基于双分支边缘卷积融合网络的红外与可见光图像融合方法
13
作者 张鸿德 冯鑫 +1 位作者 杨杰铭 邱国航 《光子学报》 EI CAS CSCD 北大核心 2024年第8期287-298,共12页
提出一种基于双分支边缘卷积融合网络的红外与可见光图像融合方法。首先,提出一种改进的双分支边缘卷积结构,将图像包含的信息分解为公共信息和模态信息,并于每个分支引入边缘卷积块,更好的提取深度特征;然后在融合层引入卷积注意力模... 提出一种基于双分支边缘卷积融合网络的红外与可见光图像融合方法。首先,提出一种改进的双分支边缘卷积结构,将图像包含的信息分解为公共信息和模态信息,并于每个分支引入边缘卷积块,更好的提取深度特征;然后在融合层引入卷积注意力模块对模态特征进行增强;最后基于所本文编解码网络特点,提出一种重建损失结合融合损失的损失函数。经过大量的消融性实验和对比实验表明,本文方法能够很好的保留原图像中的公共信息和模态信息,并且相比目前最新的融合方法在主观和客观评价上都具有优秀的综合性能。 展开更多
关键词 红外与可见光图像融合 双分支边缘卷积融合网络 深度学习 边缘卷积块 卷积注意力
下载PDF
融合注意力机制和卷积神经网络的电网暂态电压稳定评估及可解释性分析
14
作者 张哲 秦博宇 +2 位作者 高鑫 丁涛 张逸兴 《电网技术》 EI CSCD 北大核心 2024年第11期4648-4657,I0057,I0056,共12页
提升复杂多变运行场景下电网稳定评估的时效性和准确性,提出一种融合注意力机制和卷积神经网络(convolutional neural network,CNN)的暂态电压稳定评估及可解释性分析方法。首先,采用卷积块注意力模块(convolutional block attention mo... 提升复杂多变运行场景下电网稳定评估的时效性和准确性,提出一种融合注意力机制和卷积神经网络(convolutional neural network,CNN)的暂态电压稳定评估及可解释性分析方法。首先,采用卷积块注意力模块(convolutional block attention module,CB AM)提升传统CNN的特征捕获能力,考虑模型特性和网络结构设计CBAMCNN组合模块。其次,建立基于CBAM-CNN的电网暂态电压稳定评估模型,揭示运行工况多变场景下系统关键电气量和稳定状态之间的映射关系。最后,基于沙普利值加性解释(Shapley additive explanations,SHAP)理论提出数据驱动模型评估结果的可解释性分析框架,提炼影响样本稳定状态的主导特征,评估各输入特征量对模型输出结果的贡献程度。在典型受端电网仿真系统中验证了所提稳定评估方法的准确性和可解释性分析方法的有效性。 展开更多
关键词 卷积块注意力模-卷积神经网络 暂态电压稳定评估 沙普利值加性解释理论 可解释性分析
下载PDF
基于卷积神经网络的Retinex低照度图像增强 被引量:3
15
作者 赵征鹏 李俊钢 普园媛 《计算机科学》 CSCD 北大核心 2022年第6期199-209,共11页
利用传统Retinex模型进行低照度图像分解和增强时,需要人工不断地进行参数调试以达到最优解,这会降低整个过程的效率。此外,现有的基于Retinex理论的低照度图像增强方法在进行图像增强时未能很好地兼顾反射分量和光照分量,会存在低照度... 利用传统Retinex模型进行低照度图像分解和增强时,需要人工不断地进行参数调试以达到最优解,这会降低整个过程的效率。此外,现有的基于Retinex理论的低照度图像增强方法在进行图像增强时未能很好地兼顾反射分量和光照分量,会存在低照度图反射分量噪点多、光照分量亮度低且细节不够突出的问题。基于此,提出了一种数据驱动的深层网络来学习低照度图像的分解和增强,通过端到端的网络训练来进行模型参数的学习。该网络先将低照度图分解为反射分量和光照分量,针对反射分量噪点多的问题,采用改进的去噪卷积神经网络(New Denoising Convolutional Neural Network,NDnCNN)模型进行去噪;针对光照分量亮度低、细节不够突出的问题,引入卷积块注意力模型(Convolutional Block Attention Model,CBAM)进行细节增强并指导网络进行光照分量的修正;最后用去噪后的反射分量和修正后的光照分量进行图像重建。经测试,增强后的低照度图亮度提升,细节突出,信息丰富,图像失真小且真实自然。 展开更多
关键词 低照度图像增强 RETINEX理论 卷积神经网络 改进的DnCNN模型 卷积块注意力模型
下载PDF
一种残差卷积与多尺度特征融合的海岛多时相遥感影像变化检测方法 被引量:1
16
作者 管军 石爱业 +2 位作者 徐传杰 李景奇 胡锐 《现代电子技术》 2023年第14期7-10,共4页
为提高多时相遥感影像的海岛变化检测精度,文中采用编解码结构模型将变化检测中变和不变的二分类问题视为语义分割任务,提出一种残差卷积与多尺度特征融合的海岛多时相遥感影像变化检测方法(RMFNet)。首先,在编码器层构建4组优化的残差... 为提高多时相遥感影像的海岛变化检测精度,文中采用编解码结构模型将变化检测中变和不变的二分类问题视为语义分割任务,提出一种残差卷积与多尺度特征融合的海岛多时相遥感影像变化检测方法(RMFNet)。首先,在编码器层构建4组优化的残差卷积块(RC)用于提取特征信息,每组残差卷积块通过三重跳跃连接方式提高网络的泛化能力;其次,构建基于空洞空间金字塔池化的多尺度特征融合块(MFF),融合语义信息、全局上下文信息以充分学习海岛变化与未变化的特征;然后,使用损失函数指导残差卷积块和多尺度特征融合块的训练;最后,以中国香港岛为例,基于公开的变化检测OSCD数据集进行仿真实验。结果表明:提出的RMFNet方法的Kappa值比CNN、ResNet-18、PSPNet、SegNet、UNet五种方法分别提高0.2509、0.2019、0.1313、0.0786、0.0380,验证了该方法的有效性。 展开更多
关键词 多时相遥感影像 残差卷积块 多尺度特征融合 特征信息提取 变化检测 损失函数
下载PDF
基于卷积注意力的单导联心电图房颤检测方法
17
作者 丘荣建 王剑卓 《自动化与信息工程》 2024年第4期18-23,共6页
随着可穿戴心电设备的普及,从单导联心电图中自动检测房颤的方法越来越重要。针对可穿戴心电设备采集的单导联心电图中存在噪声干扰的问题,提出一种基于卷积注意力的残差神经网络模型Resnet34-CAB。通过融合卷积注意力块(CAB),在模型复... 随着可穿戴心电设备的普及,从单导联心电图中自动检测房颤的方法越来越重要。针对可穿戴心电设备采集的单导联心电图中存在噪声干扰的问题,提出一种基于卷积注意力的残差神经网络模型Resnet34-CAB。通过融合卷积注意力块(CAB),在模型复杂度少量增加的情况下,选择性地关注心电图的关键特征,自适应地抑制噪声,提高了模型的检测性能。在公开数据集上的实验结果表明,Resnet34-CAB模型优于Resnet34、Resnet34-Transformer模型,验证了融合CAB的有效性。 展开更多
关键词 单导联心电图 卷积注意力 房颤检测 残差神经网络
下载PDF
基于CBAM YOLOv4-Mish的乳腺X线摄片肿块检测方法 被引量:4
18
作者 吴福彬 卢浩然 +1 位作者 王统 徐胜舟 《中南民族大学学报(自然科学版)》 CAS 北大核心 2023年第2期245-252,共8页
为了提高乳腺肿块的检测精度,基于YOLOv4提出了一种CBAM YOLOv4-Mish模型进行乳腺X线摄片肿块检测.该模型采用平滑、连续可导的Mish激活函数替换原模型中的Leaky ReLU激活函数,并引入了卷积块注意力模块,使模型更加关注于肿块等关键信... 为了提高乳腺肿块的检测精度,基于YOLOv4提出了一种CBAM YOLOv4-Mish模型进行乳腺X线摄片肿块检测.该模型采用平滑、连续可导的Mish激活函数替换原模型中的Leaky ReLU激活函数,并引入了卷积块注意力模块,使模型更加关注于肿块等关键信息而忽略背景等无关信息.在DDSM数据集上的实验结果表明:CBAM YOLOv4-Mish的AP_(0.5)为81.9%,比原始YOLOv4提升了3.6%.与其他乳腺肿块检测方法相比,该方法具有更好的检测能力. 展开更多
关键词 乳腺X线摄片 卷积块注意力模 乳腺肿检测
下载PDF
基于卷积神经网络的行人检测方法 被引量:2
19
作者 叶正喆 苍岩 《应用科技》 CAS 2022年第2期55-62,共8页
针对行人检测算法未能充分利用行人的特征信息,导致对行人的检测效果不佳问题,本文对无锚框的行人检测网络模型CSP进行了相应改进,提出了一种基于卷积神经网络的行人检测算法。首先,将原主干网络由ResNet-50加深为ResNet-101,然后引入... 针对行人检测算法未能充分利用行人的特征信息,导致对行人的检测效果不佳问题,本文对无锚框的行人检测网络模型CSP进行了相应改进,提出了一种基于卷积神经网络的行人检测算法。首先,将原主干网络由ResNet-50加深为ResNet-101,然后引入卷积块注意力模块(CBAM)来提高原网络对小尺度行人中心点的特征表达,加入基于分数融合公式的分类器模块来进一步提高被遮挡行人的置信度,最终得到AS-CSP算法。该算法可以进一步提高对小尺度行人以及遮挡行人的检测效果。实验采用的数据集是CityPersons数据集,并在通用行人、小尺度行人以及遮挡行人等不同场景下进行对比实验,验证新算法的有效性。实验结果表明,本文提出的AS-CSP算法在通用行人、小尺度行人以及遮挡行人场景上的检测效果相比于原算法都得到了提升。 展开更多
关键词 行人检测 CSP网络 卷积神经网络 ResNet-101网络 ResNet-50网络 卷积块注意力模 分数融合 置信度
下载PDF
改进稠密块轻量化神经网络的管道泄漏孔径识别 被引量:9
20
作者 孙洁娣 王利轩 +1 位作者 温江涛 肖启阳 《仪器仪表学报》 EI CAS CSCD 北大核心 2022年第3期98-108,共11页
深度神经网络的管道泄漏孔径识别方法虽然识别率高,但因结构复杂造成参数量大、内存占用大,极大地限制了其在资源有限的工业环境及实时处理中的应用。提出一种优化卷积改进稠密块的轻量化神经网络用于管道泄漏孔径识别。首先将深度可分... 深度神经网络的管道泄漏孔径识别方法虽然识别率高,但因结构复杂造成参数量大、内存占用大,极大地限制了其在资源有限的工业环境及实时处理中的应用。提出一种优化卷积改进稠密块的轻量化神经网络用于管道泄漏孔径识别。首先将深度可分离卷积与异构卷积结合,构造了新的多卷积稠密块实现泄漏信号的特征提取;之后采用卷积注意力机制对特征进行权重划分,实现特征的重要性区分;最后通过分类器获取结果。实验结果表明,本文方法识别准确率达到了96.59%,参数量仅为781 KB。本文方法在保证高识别准确率的同时,参数量及浮点数大幅下降,训练时间也有所减少,改善了实时响应能力,对于实际工业监测应用有指导意义。 展开更多
关键词 管道泄漏孔径识别 轻量级网络 深度可分离卷积 异构卷积 卷积稠密
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部