期刊文献+
共找到87篇文章
< 1 2 5 >
每页显示 20 50 100
基于WGAN-GP和高效卷积块注意力机制IPOA-ICNN的变压器故障诊断
1
作者 鲍克勤 谈浩冬 《水电能源科学》 北大核心 2024年第10期190-195,共6页
针对目前变压器故障诊断采集到的故障样本存在数据不平衡、特征信息提取不足的问题,提出了一种基于数据增强型和高效卷积块注意力机制(ECBAM)优化一维改进卷积神经网络(1D-ICNN)的变压器故障诊断方法。首先,建立一个基于Wasserstein梯... 针对目前变压器故障诊断采集到的故障样本存在数据不平衡、特征信息提取不足的问题,提出了一种基于数据增强型和高效卷积块注意力机制(ECBAM)优化一维改进卷积神经网络(1D-ICNN)的变压器故障诊断方法。首先,建立一个基于Wasserstein梯度惩罚生成对抗网络(WGAN-GP),对不平衡的变压器数据样本进行训练以生成合成样本,用于数据增强,并采用方差分析法选取关联性强的气体特征参量;其次,使用残差和高效卷积块注意力机制模块对重构的平衡样本进行更为细节的特征提取,以实现故障诊断网络的分类;最后,利用改进的鹈鹕优化算法(IPOA)对ICNN参数进行寻优。算例对比分析表明,所提算法的故障诊断性能具备更高的精确度和稳定性,验证了所提模型故障诊断分类性能的有效性。 展开更多
关键词 变压器故障诊断 数据增强 高效卷积注意力机制 鹈鹕优化算法
下载PDF
基于集成改进卷积注意力块的SAR图像目标分类算法
2
作者 孙靖森 李宗豫 +3 位作者 杨森 钟芝怡 艾加秋 史骏 《海军航空大学学报》 2024年第4期445-452,共8页
在合成孔径雷达(Synthetic Aperture Radar,SAR)图像中,目标的轮廓和细节通常比较复杂。传统的卷积神经网络(Convolutional Neural Network,CNN)只使用单一均值参数进行无差别的特征提取,不能很好地区分SAR特征之间的差异。为了解决此问... 在合成孔径雷达(Synthetic Aperture Radar,SAR)图像中,目标的轮廓和细节通常比较复杂。传统的卷积神经网络(Convolutional Neural Network,CNN)只使用单一均值参数进行无差别的特征提取,不能很好地区分SAR特征之间的差异。为了解决此问题,文章提出了1种基于集成改进卷积注意力块(Improved Convolutional Block Attention Module,ICBAM)的SAR图像目标分类算法ICBAM_CNN。首先,该模块通过引入方差参数至传统CBAM模块中,设计了1种改进的CBAM注意力机制,有助于分类识别网络更好地学习SAR图像不同目标卷积层输出与通道注意力之间的差异信息,提升不同SAR目标特征的可分离性;然后,ICBAM设计了1种中心坐标注意力机制,能更好地捕捉SAR图像中目标的中心分布特征,有效抑制杂波对SAR目标分类影像的干扰;最后,为了提高效率,将改进后的ICBAM模块集成到CNN网络中,实现SAR图像目标分类。ICBAM_CNN深度融合了SAR图像目标的多层级特征,提升了SAR目标特征的可分离性,可实现SAR图像目标的高精度、高效率识别分类。通过MSTAR数据集进行实验,结果表明,相比于传统CBAM方法,改进ICBAM方法的精确率提升了2.44%,召回率提升了2.24%,F1-score提升了2.34%。 展开更多
关键词 SAR图像目标分类 改进卷积注意 集成ICBAM的CNN网络 中心坐标注意力机制 多层级特征融合
下载PDF
基于卷积块注意力模块和双向特征金字塔网络的接触网支持装置检测方法研究 被引量:2
3
作者 冯新伟 黄宇祥 王忠立 《铁道技术监督》 2023年第4期16-24,共9页
接触网支持装置是接触网悬挂状态检测监测图像分析的关键对象,对支持装置零部件的检测定位是实现缺陷自动分析的基础。针对接触网支持装置零部件种类多、尺寸差异大、存在遮挡、部分零部件相似度高等问题,提出一种融合卷积块注意力模块(... 接触网支持装置是接触网悬挂状态检测监测图像分析的关键对象,对支持装置零部件的检测定位是实现缺陷自动分析的基础。针对接触网支持装置零部件种类多、尺寸差异大、存在遮挡、部分零部件相似度高等问题,提出一种融合卷积块注意力模块(convolutional block attention module,CBAM)和双向特征金字塔网络(bidirectional feature pyramid network,BiFPN)的接触网支持装置检测方法。在YOLO v5s网络模型基础上,该方法通过CBAM增强接触网支持装置的特征提取,结合BiFPN,实现不同零部件分辨率特征图的融合。利用4C装置获得的图像数据集,开展验证试验。试验结果表明,相对YOLO v5s网络模型,融合CBAM和BiFPN的接触网支持装置检测方法,网络平均精度mAP@0.5提高2.12%;能显著提升小目标检测效果,提高定位的准确性和稳定性,对接触网状态的智能分析有重要意义。 展开更多
关键词 接触网 支持装置 检测方法 卷积注意力模 双向特征金字塔网络
下载PDF
基于卷积注意力的单导联心电图房颤检测方法
4
作者 丘荣建 王剑卓 《自动化与信息工程》 2024年第4期18-23,共6页
随着可穿戴心电设备的普及,从单导联心电图中自动检测房颤的方法越来越重要。针对可穿戴心电设备采集的单导联心电图中存在噪声干扰的问题,提出一种基于卷积注意力的残差神经网络模型Resnet34-CAB。通过融合卷积注意力块(CAB),在模型复... 随着可穿戴心电设备的普及,从单导联心电图中自动检测房颤的方法越来越重要。针对可穿戴心电设备采集的单导联心电图中存在噪声干扰的问题,提出一种基于卷积注意力的残差神经网络模型Resnet34-CAB。通过融合卷积注意力块(CAB),在模型复杂度少量增加的情况下,选择性地关注心电图的关键特征,自适应地抑制噪声,提高了模型的检测性能。在公开数据集上的实验结果表明,Resnet34-CAB模型优于Resnet34、Resnet34-Transformer模型,验证了融合CAB的有效性。 展开更多
关键词 单导联心电图 卷积注意 房颤检测 残差神经网络
下载PDF
引入卷积块注意力模块的YOLOv5网络在地铁车辆一系弹簧断裂检测中的应用
5
作者 江现昌 邹庆春 +1 位作者 李翔泽 王静 《铁道技术监督》 2023年第10期29-33,共5页
作为地铁车辆关键部件的一系弹簧会发生断裂,威胁列车运行安全。由于一系弹簧断裂的位置、形状不同,并且断裂位置常常被遮挡,使得采用目标检测方法检测时,目标面积较小。对于小目标,采用的基于深度学习的目标检测方法检测难以达到好的... 作为地铁车辆关键部件的一系弹簧会发生断裂,威胁列车运行安全。由于一系弹簧断裂的位置、形状不同,并且断裂位置常常被遮挡,使得采用目标检测方法检测时,目标面积较小。对于小目标,采用的基于深度学习的目标检测方法检测难以达到好的效果。针对这一问题,在YOLOv5网络的基础上加以改进,加入更小的初始检测锚框,并且在主干网络加入空间和通道注意力模块。对比试验结果表明,改进后平均准确率提高3%,有效提高了小目标的检测能力。 展开更多
关键词 地铁动车组 转向架 一系弹簧 YOLOv5算法 卷积注意力模 注意力机制 目标检测
下载PDF
基于注意力机制的U-Net叶片缺陷图像分割
6
作者 祁雷 李宁 +2 位作者 梁伟 王峥 刘子梁 《中国安全科学学报》 CAS CSCD 北大核心 2024年第5期139-146,共8页
为解决风力发电机叶片表面缺陷检测存在分类困难和微小缺陷分割模糊的难题,构建一种基于扩张卷积和卷积注意力模块的改进U-Net语义分割网络。该网络基于网络模型的编码-解码结构,使用可迁移的VGG16的特征提取层代替U-Net网络的编码部分... 为解决风力发电机叶片表面缺陷检测存在分类困难和微小缺陷分割模糊的难题,构建一种基于扩张卷积和卷积注意力模块的改进U-Net语义分割网络。该网络基于网络模型的编码-解码结构,使用可迁移的VGG16的特征提取层代替U-Net网络的编码部分,在编码-解码之间的跳跃模块加入卷积注意力模块。通过对微小缺陷信息选取加强全局权重,使用扩张卷积增强网络特征,采用VGG16预训练模型实现迁移学习。开展Focal与Dice结合的混合损失函数验证,对比分析DeeplabV3+、PSPnet、HRNet、U-Net这4种模型。结果表明:对于叶片缺陷数据集,改进的U-Net网络模型对叶片缺陷的分类和分割任务具有更高的精度,均交并比、均像素精度和召回率等指标值分别为83.60%、92.84%和88.50%。改进U-Net网络的均交并比值比DeeplabV3+模型高13.98%,比标准U-Net模型高9.38%,能够提高叶片缺陷检测的灵敏度,有效降低检测结果的误报警率,有助于准确检测风机叶片缺陷。 展开更多
关键词 注意力机制 U-Net网络 风机叶片缺陷 图像分割 语义分割 迁移学习 卷积注意力模(CBAM)
下载PDF
基于卷积块注意力模块的图像描述生成模型 被引量:1
7
作者 余海波 陈金广 《计算机系统应用》 2021年第8期194-200,共7页
图像描述生成模型是使用自然语言描述图片的内容及其属性之间关系的算法模型.对现有模型描述质量不高、图片重要部分特征提取不足和模型过于复杂的问题进行了研究,提出了一种基于卷积块注意力机制模块(CBAM)的图像描述生成模型.该模型... 图像描述生成模型是使用自然语言描述图片的内容及其属性之间关系的算法模型.对现有模型描述质量不高、图片重要部分特征提取不足和模型过于复杂的问题进行了研究,提出了一种基于卷积块注意力机制模块(CBAM)的图像描述生成模型.该模型采用编码器-解码器结构,在特征提取网络Inception-v4中加入CBAM,并作为编码器提取图片的重要特征信息,将其送入解码器长短期记忆网络(LSTM)中,生成对应图片的描述语句.采用MSCOCO2014数据集中训练集和验证集进行训练和测试,使用多个评价准则评估模型的准确性.实验结果表明,改进后模型的评价准则得分优于其他模型,其中Model2实验能够更好地提取到图像特征,生成更加准确的描述. 展开更多
关键词 图像描述生成 卷积注意力模 卷积神经网络 长短期记忆网络
下载PDF
多尺度特征融合注意力新冠肺炎病灶分割网络
8
作者 林洁沁 黄新 《激光杂志》 CAS 北大核心 2024年第3期168-174,共7页
新冠病毒传染性极强,尽早的诊断和治疗是减少疫情造成损失的关键因素。为辅助医生诊断新冠病情,高效、准确地从肺部CT切片中分割新冠病灶,提出了一种改进的编码器-解码器深度神经网络———多尺度融合注意力网络MSANet(Multi-scale Atte... 新冠病毒传染性极强,尽早的诊断和治疗是减少疫情造成损失的关键因素。为辅助医生诊断新冠病情,高效、准确地从肺部CT切片中分割新冠病灶,提出了一种改进的编码器-解码器深度神经网络———多尺度融合注意力网络MSANet(Multi-scale Attention Network),以图像分割效果较为出色的U-Net网络为基础,通过全局池化层和设置空洞卷积的采样率,增大网络感受野,捕获多尺度信息,实现对大目标的有效分割;使用通道注意力与空间注意力,在空间维度上建模,有效提取图像深层特征。测试结果表明,改进后的算法与U-Net网络相比,分割的平均交并比提升了1.46%,类别平均像素准确率提升了0.8%,准确率提升了1.17%。 展开更多
关键词 图像处理 特征提取 卷积注意力模 空洞空间卷积池化金字塔 U-Net结构 多尺度特征融合
下载PDF
基于注意力机制轻量化模型的植物病害识别方法
9
作者 苏航 陈旭昊 +3 位作者 寿德荣 张朝阳 许彪 孙丙宇 《江苏农业学报》 CSCD 北大核心 2024年第8期1389-1399,共11页
针对现有植物病害识别模型存在响应速度慢、参数量多、计算机内存资源消耗大等问题,本研究提出了一种轻量化神经网络模型,该模型由特征提取层、特征增强层和分类器组成。为了减小模型大小并提高网络响应速度,在特征提取层中使用深度可... 针对现有植物病害识别模型存在响应速度慢、参数量多、计算机内存资源消耗大等问题,本研究提出了一种轻量化神经网络模型,该模型由特征提取层、特征增强层和分类器组成。为了减小模型大小并提高网络响应速度,在特征提取层中使用深度可分离卷积进行特征提取。为了防止网络传播过程中的梯度消失并增强病害像素特征融合,在特征提取层中引入了大卷积核倒置残差结构(IRBCKS)模块。此外,在特征增强层集成了轻量级卷积块注意力模块(CBAM)注意力机制,以捕捉植物病害相关图像中像素之间的关系,增强关键信息的提取。最后,采用剪枝技术剔除模型中冗余特征信息,从而再次减少模型参数量,形成最终的轻量级网络模型Cut-MobileNet。为验证该模型的先进性,将其与轻量化模型(MobileNet V2、SqueezeNet、GoogLeNet)和非轻量化模型(Vision Transformer、AlexNet)进行性能对比,研究结果表明,Cut-MobileNet在浮点运算量、准确率、单张图片推理时间、参数量、F1值和模型大小等性能指标上都取得了较优的效果。 展开更多
关键词 模型剪枝 卷积注意力模(CBAM)注意力机制 卷积核倒置残差结构(IRBCKS)模 植物病害 轻量化网络
下载PDF
残差卷积注意网络的图像超分辨率重建 被引量:4
10
作者 谌贵辉 陈伍 +3 位作者 李忠兵 易欣 刘会康 韩春阳 《计算机工程与应用》 CSCD 北大核心 2021年第12期193-200,共8页
针对极深神经网络图像超分辨率重建过程中,存在图像特征提取少、信息利用率低,平等处理高、低频信息通道的问题,提出了残差卷积注意网络的图像超分辨率重建算法。构造多尺度残差注意块,最大限度地提高网络提取到多尺寸特征信息,引入通... 针对极深神经网络图像超分辨率重建过程中,存在图像特征提取少、信息利用率低,平等处理高、低频信息通道的问题,提出了残差卷积注意网络的图像超分辨率重建算法。构造多尺度残差注意块,最大限度地提高网络提取到多尺寸特征信息,引入通道注意力机制,增强高频信息通道的表征能力。引入卷积注意块的特征提取结构,减少高频图像细节信息的丢失。在网络的重建层,引入全局跳远连接结构,进一步丰富重建的高分辨率图像信息的流动。实验结果表明,所提算法在Set5等基准数据集上的PSNR、SSIM比其他基于深度卷积神经网络的方法均明显提升,验证了提出方法的有效性与先进性。 展开更多
关键词 图像超分辨率重建 特征提取 多尺度残差注意 卷积注意块
下载PDF
基于多注意力机制与跨特征融合的语义分割算法
11
作者 闵莉 董冰洁 安冬 《计算机工程》 CAS CSCD 北大核心 2024年第8期282-289,共8页
图像语义分割技术在缺陷检测、医疗诊断、无人驾驶等领域广泛应用。针对现有语义分割模型普遍存在训练成本过高、目标轮廓分割效果不佳以及对小目标误分割、漏分割等问题,基于DeepLabv3+网络框架,提出多注意力机制与跨特征融合相结合的... 图像语义分割技术在缺陷检测、医疗诊断、无人驾驶等领域广泛应用。针对现有语义分割模型普遍存在训练成本过高、目标轮廓分割效果不佳以及对小目标误分割、漏分割等问题,基于DeepLabv3+网络框架,提出多注意力机制与跨特征融合相结合的图像语义分割算法。该算法选取轻量级网络MobileNetv2作为主干,以缩短训练时间;通过优化空洞空间金字塔池化模块中空洞卷积的膨胀率,改善多尺度语义特征的提取效果,提高模型对小目标的分割能力,并将兼具通道与空间的卷积块注意力机制引入其中,更加关注对分割起决定作用的区域,从而加强对目标边界的提取;在编码器中设计跨特征融合模块,以聚合不同层次特征图的空间信息和语义信息,提高网络学习特征的能力;在编码和解码部分均引入坐标注意力机制,以分解全局平均池化的方式将位置信息嵌入到通道中,从而得到分割目标的准确位置。实验结果表明,所提算法F3crc-DeepLabv3+在PASCAL VOC 2012增强数据集和Cityspaces数据集上的平均交并比分别达到了75.06%和73.06%,平均精度分别达到了84.16%和82.05%,精确率分别达到了86.18%和85.43%,训练时间分别为10 h和13.8 h,具有较优的网络性能。 展开更多
关键词 语义分割 DeepLabv3+网络 MobileNetv2网络 坐标注意 卷积注意力模 跨特征融合
下载PDF
基于混合注意力机制的动态人脸表情识别 被引量:1
12
作者 刘希未 宫晓燕 +4 位作者 赵红霞 边思宇 邵帅 戴亚平 代文鑫 《计算机应用》 CSCD 北大核心 2023年第S01期1-7,共7页
针对自然环境中存在人脸遮挡、姿势变化等复杂因素,以及卷积神经网络(CNN)中的卷积滤波器由于空间局部性无法学习大多数神经层中不同面部区域之间的长程归纳偏差的问题,提出一种用于动态人脸表情识别(DFER)的混合注意力机制模型(HA-Mode... 针对自然环境中存在人脸遮挡、姿势变化等复杂因素,以及卷积神经网络(CNN)中的卷积滤波器由于空间局部性无法学习大多数神经层中不同面部区域之间的长程归纳偏差的问题,提出一种用于动态人脸表情识别(DFER)的混合注意力机制模型(HA-Model),以提升DFER的鲁棒性和准确性。HA-Model由空间特征提取和时序特征处理两部分组成:空间特征提取部分通过两种注意力机制——Transformer和包含卷积块注意力模块(CBAM)的网格注意力模块,引导网络从空间角度学习含有遮挡、姿势变化的鲁棒面部特征并关注人脸局部显著特征;时序特征处理部分通过Transformer引导网络学习高层语义特征的时序联系,用于学习人脸表情特征的全局表示。实验结果表明,HA-Model在DFEW和AFEW基准上的准确率分别达到了67.27%和50.41%,验证了HA-Model可以有效提取人脸特征并提升动态人脸表情识别的精度。 展开更多
关键词 动态人脸表情识别 深度学习 卷积神经网络 注意力机制 TRANSFORMER 卷积注意力模
下载PDF
混合注意力机制的异常行为识别 被引量:3
13
作者 孙晓虎 余阿祥 +1 位作者 申栩林 李洪均 《计算机工程与应用》 CSCD 北大核心 2023年第5期140-147,共8页
随着人工智能的快速发展,基于计算机视觉的人体异常行为识别受到极大的关注,并被广泛应用到智能安防等领域。针对人们在加油站等重要场所抽烟以及司机驾驶途中打电话等违规行为,提出一种混合注意力机制的异常行为识别方法。利用引入的... 随着人工智能的快速发展,基于计算机视觉的人体异常行为识别受到极大的关注,并被广泛应用到智能安防等领域。针对人们在加油站等重要场所抽烟以及司机驾驶途中打电话等违规行为,提出一种混合注意力机制的异常行为识别方法。利用引入的卷积块注意力模块重点关注输入对象的显著性特征,并对输入信息进行精细化的分配和处理,在突出重要信息的同时弱化无关信息。为提升网络模型的特征挖掘能力及增强网络的信息交互性,利用提出的卷积特征提取模块进一步提取识别对象的高层语义特征,并将其与低层细节特征进行融合以达到多尺度特征交互的目的。此外,为了减少网络训练过程中错误标签造成的损失,采用标签平滑对交叉熵损失函数进行修正以此来驱动模型的学习过程。实验结果表明,所提出的模型优于当前的主流网络,可有效检测出异常行为。 展开更多
关键词 异常行为检测 注意力机制 卷积注意力模 卷积特征提取模 标签平滑
下载PDF
基于CBAM YOLOv4-Mish的乳腺X线摄片肿块检测方法 被引量:3
14
作者 吴福彬 卢浩然 +1 位作者 王统 徐胜舟 《中南民族大学学报(自然科学版)》 CAS 北大核心 2023年第2期245-252,共8页
为了提高乳腺肿块的检测精度,基于YOLOv4提出了一种CBAM YOLOv4-Mish模型进行乳腺X线摄片肿块检测.该模型采用平滑、连续可导的Mish激活函数替换原模型中的Leaky ReLU激活函数,并引入了卷积块注意力模块,使模型更加关注于肿块等关键信... 为了提高乳腺肿块的检测精度,基于YOLOv4提出了一种CBAM YOLOv4-Mish模型进行乳腺X线摄片肿块检测.该模型采用平滑、连续可导的Mish激活函数替换原模型中的Leaky ReLU激活函数,并引入了卷积块注意力模块,使模型更加关注于肿块等关键信息而忽略背景等无关信息.在DDSM数据集上的实验结果表明:CBAM YOLOv4-Mish的AP_(0.5)为81.9%,比原始YOLOv4提升了3.6%.与其他乳腺肿块检测方法相比,该方法具有更好的检测能力. 展开更多
关键词 乳腺X线摄片 卷积注意力模 乳腺肿检测
下载PDF
改进注意力机制的电梯场景下危险品检测方法 被引量:3
15
作者 郭奕裕 周箩鱼 +1 位作者 刘新瑜 李尧 《计算机应用》 CSCD 北大核心 2023年第7期2295-2302,共8页
针对电动自行车和煤气罐搭乘电梯引起的火灾隐患,提出一种改进注意力机制的电梯场景下危险品检测方法。以YOLOX-s为基线模型,首先在加强特征提取网络中引入深度可分离卷积替换标准卷积,提升模型的推理速度。然后提出一种基于混合域的高... 针对电动自行车和煤气罐搭乘电梯引起的火灾隐患,提出一种改进注意力机制的电梯场景下危险品检测方法。以YOLOX-s为基线模型,首先在加强特征提取网络中引入深度可分离卷积替换标准卷积,提升模型的推理速度。然后提出一种基于混合域的高效卷积块注意力模块(ECBAM)并嵌入主干特征提取网络中。在ECBAM模块的通道注意力部分,使用一维卷积替换两个全连接层,既降低了卷积块注意力模块(CBAM)的复杂度又提高了检测精度。最后提出一种多帧协同算法,通过结合多张图片的危险品检测结果以减少危险品入侵电梯的误报警。实验结果表明:改进后模型比YOLOX-s的平均精度均值(mAP)提升了1.05个百分点,浮点计算量降低了34.1%,模型体积减小了42.8%。可见改进后模型降低了实际应用中的误报警,且满足电梯场景下危险品检测的精度和速度要求。 展开更多
关键词 危险品检测 电梯 YOLOX-s 深度可分离卷积 高效卷积注意力模 一维卷积 多帧协同算法
下载PDF
注意力机制与复合卷积在手写识别中的应用 被引量:7
16
作者 卓天天 桑庆兵 《计算机科学与探索》 CSCD 北大核心 2022年第4期888-897,共10页
将图片切分成单“字”识别再连接成“串”是脱机手写图像识别的一种方法,但由于手写字符间易存在粘连,切分方法不易实现。卷积循环神经网络(CRNN)虽解决了整张文本图片输入,标签却不易对齐的问题,但由于不同人脱机手写风格的严重差异,... 将图片切分成单“字”识别再连接成“串”是脱机手写图像识别的一种方法,但由于手写字符间易存在粘连,切分方法不易实现。卷积循环神经网络(CRNN)虽解决了整张文本图片输入,标签却不易对齐的问题,但由于不同人脱机手写风格的严重差异,网络提取出的特征表示力不够。对此提出了加强型卷积块注意力模块和复合卷积,并将其加入处理脱机文本识别的CRNN+CTC主流框架中。加强型卷积块注意力模块增大输入特征图的贡献权重且并联地使用通道注意力、空间注意力,丰富了细化特征图语义信息的同时避免了通道注意力模块对空间注意力模块的权重干扰,使得网络更聚焦图片中的有用特征而非无用的拖拽字迹特征。而嵌入在网络深层的复合卷积采用的多卷积核卷积意味着不同尺度的特征融合,增强了网络的泛化性。基于加强型卷积块注意力模块和复合卷积的CRNN+CTC框架在具有语义信息的IAM数据集上准确率达到85.7748%,字符错误率为8.6%;在RIMES数据集上准确率达到92.8728%,字符错误率为3.9%,比起当前主流的脱机文本识别算法,性能进一步提升。 展开更多
关键词 脱机英文手写单词识别 加强型卷积注意力模 复合卷积 卷积循环神经网络(CRNN)
下载PDF
基于注意力残差U-Net的皮肤镜图像分割方法 被引量:1
17
作者 沈鑫 魏利胜 《智能系统学报》 CSCD 北大核心 2023年第4期699-707,共9页
针对皮肤镜图像类内差异性、类间相似性、数据集不平衡等问题,本文提出了一种基于注意力残差U-Net(attention residual block-UNet,ARB-UNet)的皮肤镜图像分割方法。将卷积块注意力机制模块(convolutional block attention module,CBAM... 针对皮肤镜图像类内差异性、类间相似性、数据集不平衡等问题,本文提出了一种基于注意力残差U-Net(attention residual block-UNet,ARB-UNet)的皮肤镜图像分割方法。将卷积块注意力机制模块(convolutional block attention module,CBAM)引入到U-Net模型的“跳过连接”中;同时将CBAM模块集成到残差模块DRB(dilated residual networks)中得到注意力残差结构(attention residual block,ARB);且选取Focal Tversky Loss作为该模型的损失函数;在ISIC2016数据集上对所提ARB-UNet模型进行训练和测试,并与传统方法和UNet等经典方法进行了对比实验,实验结果中灵敏度(sensitivity,SE)达到了92.9%,特异性(specificity,SP)达到了94.1%,Dice相似指数(dice similarity cofficient,DSC)达到了92.1%,整体上均优于其他对比方法,从而验证了本文方法是有效的和可行的。 展开更多
关键词 图像分割 皮肤镜 卷积神经网络 注意力残差U-Net 注意力机制 卷积注意力机制模 深度学习 残差网络
下载PDF
基于改进YOLOv5s的轻量级绝缘子缺失检测 被引量:3
18
作者 池小波 张伟杰 +1 位作者 贾新春 续泽晋 《测试技术学报》 2024年第1期19-26,共8页
针对现有绝缘子缺失检测模型计算复杂度高和小目标难以检测等问题,提出一种基于改进的YOLOv5s轻量级检测模型。首先,移除主干网络中的C3模块来减少模型的参数量。其次,在多尺度特征融合网络中引入卷积块注意力机制来提高复杂背景下模型... 针对现有绝缘子缺失检测模型计算复杂度高和小目标难以检测等问题,提出一种基于改进的YOLOv5s轻量级检测模型。首先,移除主干网络中的C3模块来减少模型的参数量。其次,在多尺度特征融合网络中引入卷积块注意力机制来提高复杂背景下模型的特征提取能力。同时,采用加权双向特征金字塔网络结构对特征进行双向跨尺度加权融合,提升网络在遮挡物、相似目标干扰下目标的检测性能。最后,选用SIoU损失函数提升网络的收敛速度和检测精度。实验结果表明,所提模型的平均精准率为96.8%,浮点运算数为2.8 GFLOPS,而原始YOLOv5s在保证97.4%的平均精准率下的浮点运算数为16.3 GFLOPS。相较于原始模型,所提模型对小目标、遮挡目标以及模糊等场景有着较强的鲁棒性,且在保证近似检测精度的同时极大减少了计算量。 展开更多
关键词 绝缘子检测 YOLOv5s模型 卷积注意力机制 加权双向特征金字塔网络 轻量化网络
下载PDF
注意力引导的三流卷积神经网络用于微表情识别 被引量:1
19
作者 赵明华 董爽爽 +4 位作者 胡静 都双丽 石程 李鹏 石争浩 《中国图象图形学报》 CSCD 北大核心 2024年第1期111-122,共12页
目的微表情识别在心理咨询、置信测谎和意图分析等多个领域都有着重要的应用价值。然而,由于微表情自身具有动作幅度小、持续时间短的特点,到目前为止,微表情的识别性能仍然有很大的提升空间。为了进一步推动微表情识别的发展,提出了一... 目的微表情识别在心理咨询、置信测谎和意图分析等多个领域都有着重要的应用价值。然而,由于微表情自身具有动作幅度小、持续时间短的特点,到目前为止,微表情的识别性能仍然有很大的提升空间。为了进一步推动微表情识别的发展,提出了一种注意力引导的三流卷积神经网络(attention-guided three-stream convolutional neural network,ATSCNN)用于微表情识别。方法首先,对所有微表情序列的起始帧和峰值帧进行预处理;然后,利用TV-L1(total variation-L1)能量泛函提取微表情两帧之间的光流;接下来,在特征提取阶段,为了克服有限样本量带来的过拟合问题,通过3个相同的浅层卷积神经网络分别提取输入3个光流值的特征,再引入卷积块注意力模块以聚焦重要信息并抑制不相关信息,提高微表情的识别性能;最后,将提取到的特征送入全连接层分类。此外,整个模型架构采用SELU(scaled exponential linear unit)激活函数以加快收敛速度。结果本文在微表情组合数据集上进行LOSO(leave-one-subject-out)交叉验证,未加权平均召回率(unweighted average recall,UAR)以及未加权F1-Score(unweighted F1-score,UF1)分别达到了0.7351和0.7205。与对比方法中性能最优的Dual-Inception模型相比,UAR和UF1分别提高了0.0607和0.0683。实验结果证实了本文方法的可行性。结论本文方法所提出的微表情识别网络,在有效缓解过拟合的同时,也能在小规模的微表情数据集上达到先进的识别效果。 展开更多
关键词 微表情识别 光流 三流卷积神经网络 卷积注意力模(CBAM) SELU激活函数
原文传递
基于CBAM-CNN的电力系统暂态电压稳定评估
20
作者 李欣 柳圣池 +3 位作者 李新宇 陈德秋 鲁玲 郭攀锋 《电力系统及其自动化学报》 CSCD 北大核心 2024年第4期59-67,75,共10页
为进一步提高电力系统暂态电压稳定评估模型的特征提取能力和模型在系统拓扑结构发生变化时的适应性,提出一种将改进的卷积神经网络与迁移学习相结合的方法。首先,在卷积神经网络的卷积层后插入卷积块注意力模块,对输入的数据从通道和... 为进一步提高电力系统暂态电压稳定评估模型的特征提取能力和模型在系统拓扑结构发生变化时的适应性,提出一种将改进的卷积神经网络与迁移学习相结合的方法。首先,在卷积神经网络的卷积层后插入卷积块注意力模块,对输入的数据从通道和空间两个独立的维度依次提取特征,提高卷积神经网络对系统暂态电压状态的识别能力。然后,将该模块与微调技术相结合,提高模型在系统拓扑结构改变时的在线更新速度。最后,算例分析验证了所提模型的有效性。 展开更多
关键词 深度学习 卷积神经网络 暂态电压稳定评估 卷积注意力模 迁移学习
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部