Face anti-spoofing is a relatively important part of the face recognition system,which has great significance for financial payment and access control systems.Aiming at the problems of unstable face alignment,complex ...Face anti-spoofing is a relatively important part of the face recognition system,which has great significance for financial payment and access control systems.Aiming at the problems of unstable face alignment,complex lighting,and complex structure of face anti-spoofing detection network,a novel method is presented using a combination of convolutional neural network and brightness equalization.Firstly,multi-task convolutional neural network(MTCNN)based on the cascade of three convolutional neural networks(CNNs),P-net,R-net,and O-net are used to achieve accurate positioning of the face,and the detected face bounding box is cropped by a specified multiple,then brightness equalization is adopted to perform brightness compensation on different brightness areas of the face image.Finally,data features are extracted and classification is given by utilizing a 12-layer convolution neural network.Experiments of the proposed algorithm were carried out on CASIA-FASD.The results show that the classification accuracy is relatively high,and the half total error rate(HTER)reaches 1.02%.展开更多
A lightweight multi-layer residual temporal convolutional network model(RTCN)is proposed to target the highly complex kinematics and temporal correlation of human motion.RTCN uses 1-D convolution to efficiently obtain...A lightweight multi-layer residual temporal convolutional network model(RTCN)is proposed to target the highly complex kinematics and temporal correlation of human motion.RTCN uses 1-D convolution to efficiently obtain the spatial structure information of human motion and extract the correlation in the time series of human motion.The residual structure is applied to the proposed network model to alleviate the problem of gradient disappearance in the deep network.Experiments on the Human 3.6M dataset demonstrate that the proposed method effectively reduces the errors of motion prediction compared with previous methods,especially of long-term prediction.展开更多
基金Project(61671204)supported by National Natural Science Foundation of ChinaProject(2016WK2001)supported by Hunan Provincial Key R&D Plan,China。
文摘Face anti-spoofing is a relatively important part of the face recognition system,which has great significance for financial payment and access control systems.Aiming at the problems of unstable face alignment,complex lighting,and complex structure of face anti-spoofing detection network,a novel method is presented using a combination of convolutional neural network and brightness equalization.Firstly,multi-task convolutional neural network(MTCNN)based on the cascade of three convolutional neural networks(CNNs),P-net,R-net,and O-net are used to achieve accurate positioning of the face,and the detected face bounding box is cropped by a specified multiple,then brightness equalization is adopted to perform brightness compensation on different brightness areas of the face image.Finally,data features are extracted and classification is given by utilizing a 12-layer convolution neural network.Experiments of the proposed algorithm were carried out on CASIA-FASD.The results show that the classification accuracy is relatively high,and the half total error rate(HTER)reaches 1.02%.
文摘A lightweight multi-layer residual temporal convolutional network model(RTCN)is proposed to target the highly complex kinematics and temporal correlation of human motion.RTCN uses 1-D convolution to efficiently obtain the spatial structure information of human motion and extract the correlation in the time series of human motion.The residual structure is applied to the proposed network model to alleviate the problem of gradient disappearance in the deep network.Experiments on the Human 3.6M dataset demonstrate that the proposed method effectively reduces the errors of motion prediction compared with previous methods,especially of long-term prediction.