期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
改进卷积玻尔兹曼机的图像特征深度提取 被引量:11
1
作者 刘凯 张立民 范晓磊 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2016年第5期155-159,共5页
针对卷积深度和信念网络存在计算复杂度高和训练缓慢的问题,提出卷积深度玻尔兹曼机用于图像特征提取.针对卷积受限玻尔兹曼机进行改进,提出最大化图像中间区域概率的训练目标函数,并引入性能较好的交叉熵稀疏惩罚因子和dropout训练方法... 针对卷积深度和信念网络存在计算复杂度高和训练缓慢的问题,提出卷积深度玻尔兹曼机用于图像特征提取.针对卷积受限玻尔兹曼机进行改进,提出最大化图像中间区域概率的训练目标函数,并引入性能较好的交叉熵稀疏惩罚因子和dropout训练方法.设计卷积深度玻尔兹曼机结构,提出均值聚合机制,将聚合层内点的值定义为block中各点激活概率均值,对层间关联进行简化,将聚合层内各面直接叠加以供高层CRBM提取特征.通过在MNIST手写数字识别集上的实验结果证明,采用新模型提取的图像特征分类准确率提高0.5%、训练时间减少50%,且达到了目前MNIST数据集的最佳水平. 展开更多
关键词 深度学习 图像特征提取 卷积受限玻尔兹曼 卷积深度玻尔兹曼机
下载PDF
基于深度卷积限制玻尔兹曼机的步态识别 被引量:5
2
作者 周兰 于重重 +1 位作者 陈秀新 王鑫 《计算机工程与设计》 北大核心 2018年第1期244-248,共5页
传统的步态识别方法难以得到有效的步态特征,而深度学习方法可以通过学习自动获得特征,然而现有的深度学习模型用于步态识别时存在一些问题。深度卷积神经网络训练速度快,但训练精度较低;深度置信网络模型精度较高,但模型收敛速度较慢... 传统的步态识别方法难以得到有效的步态特征,而深度学习方法可以通过学习自动获得特征,然而现有的深度学习模型用于步态识别时存在一些问题。深度卷积神经网络训练速度快,但训练精度较低;深度置信网络模型精度较高,但模型收敛速度较慢。针对这两种模型的特点,提出一种两者平衡的算法模型,即深度卷积限制玻尔兹曼机。将卷积神经网络中权值共享、提取图像局部特征等方面的优势融入深度玻尔兹曼机模型中,提高训练精度,减少参数数量。所提算法在CASIA步态数据库上的实验结果验证了该算法在步态识别问题上的有效性和可行性。 展开更多
关键词 步态识别 深度卷积限制玻尔兹曼 深度卷积神经网络 限制玻尔兹曼 CASIA步态数据库
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部