期刊文献+
共找到689篇文章
< 1 2 35 >
每页显示 20 50 100
基于注意力机制的卷积神经网络人脸表情识别 被引量:5
1
作者 亢洁 李思禹 《陕西科技大学学报》 CAS 2020年第4期159-165,171,共8页
现有的卷积神经网络规模越来越大,导致参数量过大,结构不够轻量,并且现有的网络难以识别人脸表情的细微变化,不能对人脸表情特征进行精确提取,表情识别性能有待提高.针对以上问题,提出了一种基于注意力机制的卷积神经网络表情识别方法.... 现有的卷积神经网络规模越来越大,导致参数量过大,结构不够轻量,并且现有的网络难以识别人脸表情的细微变化,不能对人脸表情特征进行精确提取,表情识别性能有待提高.针对以上问题,提出了一种基于注意力机制的卷积神经网络表情识别方法.该方法设计了一种新的网络结构,网络在卷积层的基础上增加了残差恒等块,同时引入注意力模块(Spatial Group-wise Enhance module,SGE),有效缓解了网络的过拟合现象,丰富了人脸表情特征学习,并利用全局特征和局部特征的相似性来指导语义特征的空间分布,使每个特征组自主增强人脸表情的特征学习.该网络结构较为轻量,参数量较少.在RAF-DB和CK+数据集上的实验结果表明,该方法有效改善了人脸表情识别的性能. 展开更多
关键词 卷积神经网络 人脸表情识别 注意力机制 残差恒等块
下载PDF
双通道卷积神经网络人脸表情识别 被引量:5
2
作者 张琳琳 陈志雨 张啸 《长春工业大学学报》 CAS 2019年第2期142-148,共7页
将卷积神经网络的单通道全连接层改为双通道,构建并训练了一个新的双通道卷积神经网络模型以增强模型的特征表达能力。在全连接层用Maxout激活函数代替传统的ReLU激活函数以优化网络内部结构。在网络训练过程中,采用A-Softmax损失,使卷... 将卷积神经网络的单通道全连接层改为双通道,构建并训练了一个新的双通道卷积神经网络模型以增强模型的特征表达能力。在全连接层用Maxout激活函数代替传统的ReLU激活函数以优化网络内部结构。在网络训练过程中,采用A-Softmax损失,使卷积神经网络能够学习角度判别特征。改进后的卷积神经网络模型在FER2013数据集上准确率为73.6%。 展开更多
关键词 人脸表情识别 深度学习 双通道卷积神经网络 A-Softmax损失
下载PDF
基于改进AlexNet卷积神经网络人脸识别的研究
3
作者 蔡靖 谷承睿 +1 位作者 刘光达 孙慧慧 《电子技术应用》 2024年第11期42-46,共5页
近期,人脸识别技术在社会上广受关注,其非接触式的识别特性相较于指纹等传统接触式识别方法展现出明显优势。在深度学习领域,由于传统卷积神经网络在人脸识别任务上的准确性和速度尚有提升空间,因此提出采用改进的AlexNet卷积神经网络... 近期,人脸识别技术在社会上广受关注,其非接触式的识别特性相较于指纹等传统接触式识别方法展现出明显优势。在深度学习领域,由于传统卷积神经网络在人脸识别任务上的准确性和速度尚有提升空间,因此提出采用改进的AlexNet卷积神经网络进行人脸识别。通过实验验证,与传统卷积网络相比,改进后的AlexNet在人脸识别上不仅准确度更高,而且识别过程更为稳定。 展开更多
关键词 深度学习 卷积神经网络 人脸识别 AlexNet
下载PDF
应用于人脸识别的多任务卷积神经网络性能优化
4
作者 叶惠仙 《中原工学院学报》 CAS 2024年第1期8-13,共6页
对一种多任务卷积神经网络的人脸识别性能进行研究与优化。该神经网络采用3个独立的任务网络分别进行人脸检测、关键点定位和人脸识别。让3个任务网络在训练过程中共享底层卷积层的特征表示,使得模型能针对多个任务同时进行学习,进而提... 对一种多任务卷积神经网络的人脸识别性能进行研究与优化。该神经网络采用3个独立的任务网络分别进行人脸检测、关键点定位和人脸识别。让3个任务网络在训练过程中共享底层卷积层的特征表示,使得模型能针对多个任务同时进行学习,进而提高其泛化能力和识别精度。为了增强模型对图像的学习能力,采用一种数据增强和迁移学习技术,使人脸识别系统的准确性、鲁棒性和可靠性均得到了显著提升。研究结果为发展人脸识别技术提供了新的思路,尤其在处理复杂场景和多样化人脸图像方面具有一定的应用前景。 展开更多
关键词 多任务学习 多任务卷积神经网络(MTCNN) 人脸识别 网络性能优化
下载PDF
基于改进轻量卷积神经网络MobileNetV3的人脸表情识别
5
作者 雷晓鹏 《现代计算机》 2024年第10期29-34,共6页
人脸表情识别在授课中应用的及时检测可有效提升教育质量和学生参与度。为实现人脸表情识别在授课中的实时检测,该研究基于卷积神经网络MobileNetV3进行学习,对SE和卷积层进行了改进,以构建人脸表情识别模型,可识别八种不同的表情类别... 人脸表情识别在授课中应用的及时检测可有效提升教育质量和学生参与度。为实现人脸表情识别在授课中的实时检测,该研究基于卷积神经网络MobileNetV3进行学习,对SE和卷积层进行了改进,以构建人脸表情识别模型,可识别八种不同的表情类别。研究空洞卷积的位置对模型性能的影响,发现将空洞卷积放在网络的前部对性能有积极影响,而放在后部则会导致性能下降。同时,通过引入SSE(space squeeze-and-excitation)模块并优化其位置和结构,进一步提高了模型性能。最终提出的MobileNetV3改进版本在参数数量和模型文件大小上有显著减小,但精度下降了1%左右。对模型进行了多次随机试验,鲁棒性良好。该研究可为人脸表情识别在授课中的实时应用提供理论基础和技术支持,未来将致力于开发可在移动端应用的人脸表情识别系统。 展开更多
关键词 人脸表情识别 卷积神经网络 MobileNetV3 空洞卷积 SSE模块
下载PDF
带有特征信息卷积神经网络的人脸识别算法 被引量:1
6
作者 岳也 温瑞萍 王川龙 《工程数学学报》 CSCD 北大核心 2024年第3期410-420,共11页
图像分类中,卷积神经网络在人脸识别中取得了较大的进展。在卷积提取人脸图像特征信息操作时,当卷积核数目有限的情况下,可能提取到的特征值,如头发、纹理等,并不能很好的代表该人的主要特征,从而导致识别率降低,而增加卷积核数目又会... 图像分类中,卷积神经网络在人脸识别中取得了较大的进展。在卷积提取人脸图像特征信息操作时,当卷积核数目有限的情况下,可能提取到的特征值,如头发、纹理等,并不能很好的代表该人的主要特征,从而导致识别率降低,而增加卷积核数目又会导致识别时间增加。针对这一问题,提出了一种基于特征信息卷积神经网络的人脸识别方法。该方法在图像处理过程中,使用奇异值分解,选取前4个奇异值代表人脸的主要特征,快速滤除大部分无用的特征信息,形成新的图像特征模板库。利用卷积网络在提高网络感受野的同时不丢失特征图信息的优势,融合最具有代表性的特征信息,最大程度地捕捉图像信息。采用卷积神经网络模型和基于奇异值分解的特征融合的结构模型实现人脸识别,仿真实验结果表明,这种方法减少了算法的训练时间,提高了人脸识别的准确性。 展开更多
关键词 人脸识别 奇异值分解 特征提取 卷积神经网络 人脸数据库 仿真实验
下载PDF
基于卷积神经网络的人脸识别
7
作者 刘航 孔维泽 +1 位作者 牟卓晶 朱亚茹 《科学技术创新》 2024年第14期65-69,共5页
人脸识别是计算机视觉领域中的一项重要技术,具有广泛的应用场景,如安全监控、身份验证、社交网络等。本文采用深度学习技术提出了一种基于卷积神经网络(CNN)的人脸识别模型,通过训练大量的数据实现了人脸的高精度识别。本文首先详细描... 人脸识别是计算机视觉领域中的一项重要技术,具有广泛的应用场景,如安全监控、身份验证、社交网络等。本文采用深度学习技术提出了一种基于卷积神经网络(CNN)的人脸识别模型,通过训练大量的数据实现了人脸的高精度识别。本文首先详细描述了卷积神经网络模型的设计和实现过程。然后使用ReLU激活函数增加模型的非线性,通过反向传播算法进行实练,最后在公开人脸数据集上对模型进行训练和测试,达到了100%的正确率。实验结果表明,该模型在识别率、鲁棒性和泛化能力等方面都表现出了优异的性能。 展开更多
关键词 人脸识别 计算机视觉 卷积神经网络 深度学习
下载PDF
一种用于人脸表情识别的卷积神经网络 被引量:49
8
作者 卢官明 何嘉利 +1 位作者 闫静杰 李海波 《南京邮电大学学报(自然科学版)》 北大核心 2016年第1期16-22,共7页
为了避免传统的表情识别中复杂的显式特征提取过程,文中提出了一种用于人脸表情识别的卷积神经网络(CNN)。首先,对人脸表情图像进行归一化预处理,并使用可训练的卷积核提取隐式的特征。然后,采用最大池化方法对提取的隐式特征进行降维... 为了避免传统的表情识别中复杂的显式特征提取过程,文中提出了一种用于人脸表情识别的卷积神经网络(CNN)。首先,对人脸表情图像进行归一化预处理,并使用可训练的卷积核提取隐式的特征。然后,采用最大池化方法对提取的隐式特征进行降维处理。最后,采用Softmax分类器对测试样本图像的表情进行分类识别。使用图形处理器(GPU)在CK+人脸表情数据库上进行了实验,结果表明了CNN用于人脸表情识别的性能和泛化能力。 展开更多
关键词 人脸表情识别 卷积神经网络 深度学习 图形处理器 特征提取
下载PDF
基于卷积神经网络在图像识别中的应用研究 被引量:2
9
作者 罗富贵 宋倩 +1 位作者 覃运初 施运应 《电脑与信息技术》 2024年第3期51-54,共4页
文章主要介绍了卷积神经网络的深度学习模型,其在图像处理方面表现突出并且具有端到端的学习能力,因此,近年来CNN在图像识别领域一直很热门。文章总结和探讨了基于卷积神经网络的图像识别研究,包括介绍了该模型的基本结构和工作原理,比... 文章主要介绍了卷积神经网络的深度学习模型,其在图像处理方面表现突出并且具有端到端的学习能力,因此,近年来CNN在图像识别领域一直很热门。文章总结和探讨了基于卷积神经网络的图像识别研究,包括介绍了该模型的基本结构和工作原理,比较了常用卷积神经网络模型的优缺点,还探讨了卷积神经网络在人脸识别、医学图像识别、交通识别、字符识别等领域的应用,最后,文章对神经卷积网络在图像识别方面需要解决的问题以及未来的发展方向进行了讨论,以期为图像识别技术的进一步研究提供相应的参考。 展开更多
关键词 卷积神经网络 图像识别 网络结构 人脸识别
下载PDF
改进深度学习块卷积神经网络的人脸表情识别 被引量:11
10
作者 何永强 秦勤 王俊鹏 《计算机工程与设计》 北大核心 2019年第3期850-855,共6页
设计一种改进的块卷积神经网络架构,并结合主动形状模型和局部二元模式映射实现人脸表情识别。采用主动形状模型定位人脸关键点,实现人脸姿态校正和感兴趣区域抽取;对校正后的图像进行局部二元模式映射,降低光照干扰;设计改进的卷积神... 设计一种改进的块卷积神经网络架构,并结合主动形状模型和局部二元模式映射实现人脸表情识别。采用主动形状模型定位人脸关键点,实现人脸姿态校正和感兴趣区域抽取;对校正后的图像进行局部二元模式映射,降低光照干扰;设计改进的卷积神经网络架构,对局部二元模式图像和感兴趣区域两个输入项进行学习和训练,建立分类器并实现人脸表情分类。人脸表情识别实验结果表明,该方法识别率高,运算效率较高。 展开更多
关键词 人脸表情识别 卷积神经网络 主动形状模型 局部二元模式 感兴趣区域池化
下载PDF
基于卷积神经网络的表情不变三维人脸识别 被引量:12
11
作者 陈志轩 周大可 黄经纬 《电子测量技术》 2017年第4期157-161,171,共6页
针对三维人脸识别中的表情问题,提出一种基于卷积神经网络的三维人脸识别方法。根据人脸先验知识,构建基于测地线距离的三维人脸特征点模型;利用该模型,提取输入三维人脸的局域Gabor特征和测地线距离特征,进而获得表情不变的人脸表述;... 针对三维人脸识别中的表情问题,提出一种基于卷积神经网络的三维人脸识别方法。根据人脸先验知识,构建基于测地线距离的三维人脸特征点模型;利用该模型,提取输入三维人脸的局域Gabor特征和测地线距离特征,进而获得表情不变的人脸表述;将上述特征输入类Lenet-5卷积神经网络,获得最终的识别结果。在Facewarehouse三维人脸数据库上的实验结果表明,该方法的正确识别率达到97.60%,优于几种经典三维人脸识别方法,对表情变化均有较强的稳健性。 展开更多
关键词 三维人脸识别 表情变化 GABOR特征 测地线距离 卷积神经网络
下载PDF
基于多特征融合卷积神经网络的人脸表情识别 被引量:13
12
作者 王建霞 陈慧萍 +1 位作者 李佳泽 张晓明 《河北科技大学学报》 CAS 2019年第6期540-547,共8页
针对卷积神经网络特征提取不够充分且识别率低等问题,提出了一种多特征融合卷积神经网络的人脸表情识别方法。首先,为了增加网络的宽度和深度,在网络中引入Inception结构来提取特征的多样性;然后,将提取到的高层次特征与低层次特征进行... 针对卷积神经网络特征提取不够充分且识别率低等问题,提出了一种多特征融合卷积神经网络的人脸表情识别方法。首先,为了增加网络的宽度和深度,在网络中引入Inception结构来提取特征的多样性;然后,将提取到的高层次特征与低层次特征进行融合,利用池化层的特征,将融合后的特征送入全连接层,对其特征进行融合处理来增加网络的非线性表达,使网络学习到的特征更加丰富;最后,输出层经过Softmax分类器对表情进行分类,在公开数据集FER2013和CK+上进行实验,并且对实验结果进行分析。实验结果表明:改进后的网络结构在FER2013和CK+数据集的面部表情上,识别率分别提高了0.06%和2.25%。所提方法在人脸表情识别中对卷积神经网络设置和参数配置方面具有参考价值。 展开更多
关键词 计算机图像处理 面部表情识别 卷积神经网络 特征融合 特征提取 表情分类
下载PDF
基于多特征与卷积神经网络的人脸表情识别 被引量:7
13
作者 于明 安梦涛 刘依 《科学技术与工程》 北大核心 2018年第13期104-110,共7页
提出一种多特征与卷积神经网络相结合的人脸表情识别方法。先对人脸表情图像进行预处理,根据人脸面部"三庭五眼"的特征和人脸的几何模型对图像进行裁剪,采用双三次插值法对图像进行缩放。然后提取样本的局部方向模式、二维离... 提出一种多特征与卷积神经网络相结合的人脸表情识别方法。先对人脸表情图像进行预处理,根据人脸面部"三庭五眼"的特征和人脸的几何模型对图像进行裁剪,采用双三次插值法对图像进行缩放。然后提取样本的局部方向模式、二维离散小波变换、Sobel算子三种特征。将这三种特征以三通道图像的形式输入卷积神经网络中进行自适应融合,融合后的特征通过Softmax层进行分类。在CK+数据库的识别率为99.51%,在RAF-DB的识别率为72.1%,识别率都有所提升,验证了所提方法的有效性。 展开更多
关键词 人脸表情识别 卷积神经网络 多特征提取 特征融合
下载PDF
基于域适应卷积神经网络的人脸表情识别 被引量:14
14
作者 亢洁 李佳伟 杨思力 《计算机工程》 CAS CSCD 北大核心 2019年第12期201-206,共6页
在利用卷积神经网络进行人脸表情识别时,可借助其他数据集进行辅助训练以应对缺少标记数据的情况,但源域数据库和目标域数据库之间的数据分布差异会影响分类正确率。为此,以AlexNet网络为原型构建基于域适应的卷积神经网络结构。通过引... 在利用卷积神经网络进行人脸表情识别时,可借助其他数据集进行辅助训练以应对缺少标记数据的情况,但源域数据库和目标域数据库之间的数据分布差异会影响分类正确率。为此,以AlexNet网络为原型构建基于域适应的卷积神经网络结构。通过引入包含注意力机制的SE模块进行特征重标定,同时利用域适应方法减小领域差异性。在人脸识别公开数据集上的实验结果表明,与AlexNet和GoingDeep等网络相比,该网络能够以较少的参数量获得较高的识别正确率。 展开更多
关键词 卷积神经网络 人脸表情识别 数据分布 域适应 迁移学习
下载PDF
基于轻量级神经网络的人脸表情识别研究
15
作者 于成成 郭芝源 《物联网技术》 2024年第8期49-52,共4页
表情是人与人进行情绪交流的主要媒介,人脸表情识别是计算机视觉领域的一个研究热点,在众多领域中应用广泛。目前,主流的人脸表情识别技术主要基于传统的卷积神经网络,但其网络结构复杂,参数量和计算量庞大。轻量级神经网络通过引入深... 表情是人与人进行情绪交流的主要媒介,人脸表情识别是计算机视觉领域的一个研究热点,在众多领域中应用广泛。目前,主流的人脸表情识别技术主要基于传统的卷积神经网络,但其网络结构复杂,参数量和计算量庞大。轻量级神经网络通过引入深度可分离卷积技术,在不影响或轻微降低识别准确率的前提下,能够大幅度缩减模型的参数量和计算复杂度。在轻量级神经网络的人脸表情识别研究中,通过构建MobileNet和mini_Xception两种轻量级神经网络模型,以传统的卷积神经网络VGG16为比较基准,分别在FER2013和CK+两个数据集上展开人脸表情识别实验。在FER2013数据集上,两个轻量级模型准确率下降了1.39个百分点和6.10个百分点,参数量却仅为VGG16的8.11%和0.15%。同样,在CK+数据集上,模型准确率分别下降了2.53个百分点和2.02个百分点,参数量分别是VGG16的9.6%和0.17%。实验结果证明了轻量级神经网络模型MobileNet和mini_Xception在人脸表情识别任务中的优越性。 展开更多
关键词 人脸表情识别 轻量级神经网络模型 深度可分离卷积 MobileNet mini_Xception VGG16
下载PDF
面向人脸表情识别的迁移卷积神经网络研究 被引量:18
16
作者 翟懿奎 刘健 《信号处理》 CSCD 北大核心 2018年第6期729-738,共10页
人脸表情识别是模式识别研究的一个重要领域,现实环境中人脸表情识别容易受到光照、姿态、个体表情差异等因素的影响,识别效果仍有待提高。为了取得更好的人脸表情识别效果,本文提出一种基于迁移卷积神经网络的人脸表情识别方法,本文在... 人脸表情识别是模式识别研究的一个重要领域,现实环境中人脸表情识别容易受到光照、姿态、个体表情差异等因素的影响,识别效果仍有待提高。为了取得更好的人脸表情识别效果,本文提出一种基于迁移卷积神经网络的人脸表情识别方法,本文在训练得到人脸识别网络模型的基础上,采用迁移学习方法将所得人脸识别模型迁移到人脸表情识别任务上,并提出Softmax-MSE损失函数和双激活层(Double Activate Layer,DAL)结构,以提高模型的识别能力。在FER2013数据库和SFEW2.0数据库上的实验表明,本文所提方法分别取得了61.59%和47.23%的主流识别效果。 展开更多
关键词 表情识别 深度卷积神经网络 迁移学习
下载PDF
基于改进的LeNet-5卷积神经网络的人脸表情识别 被引量:8
17
作者 赵彩敏 刘国红 《许昌学院学报》 CAS 2021年第2期113-116,共4页
LeNet-5卷积神经网络在手写数字库上取得了很好地识别效果,但在表情识别中识别率很低.改进了LeNet-5卷积神经网络,使用浅层卷积结构,连续经过1×1和3×3的卷积层,在每一层的卷积后,加上Z-score标准化处理,使用性能更好的Relu激... LeNet-5卷积神经网络在手写数字库上取得了很好地识别效果,但在表情识别中识别率很低.改进了LeNet-5卷积神经网络,使用浅层卷积结构,连续经过1×1和3×3的卷积层,在每一层的卷积后,加上Z-score标准化处理,使用性能更好的Relu激活函数,此函数计算速度快,减少梯度弥散问题;输出层用softmax函数,该层输出表情图像的概率.仿真结果表明,在JAFFE表情数据库上,即使在小样本数据集的情况下,算法识别率达到79.81%,识别单幅人脸表情图像的平均耗时为0.353 s. 展开更多
关键词 表情识别 卷积神经网络 激活函数 Z-score标准化处理
下载PDF
基于卷积神经网络的人脸表情识别 被引量:8
18
作者 徐鹏 薄华 《微型机与应用》 2015年第12期45-47,共3页
传统的神经网络表情识别系统由特征提取和神经网络分类器组成,利用人的经验来获取模式特征,很容易丢失表征表情特征的细节信息。提出一种基于卷积神经网络的识别方法,避免了对图像进行复杂的特征提取,直接把图像数据作为输入。通过在Coh... 传统的神经网络表情识别系统由特征提取和神经网络分类器组成,利用人的经验来获取模式特征,很容易丢失表征表情特征的细节信息。提出一种基于卷积神经网络的识别方法,避免了对图像进行复杂的特征提取,直接把图像数据作为输入。通过在Cohn-Kanade表情库上的实验结果表明,该方法能够取得很好的表情分类效果。 展开更多
关键词 卷积神经网络 人脸表情识别
下载PDF
基于卷积神经网络特征图聚类的人脸表情识别 被引量:7
19
作者 刘全明 辛阳阳 《计算技术与自动化》 2020年第1期106-111,共6页
针对卷积层存在的特征冗余问题,提出了一种基于卷积神经网络的特征图聚类方法。首先通过预训练网络参数提取网络最后一层卷积层的特征图,然后对特征图进行聚类操作,取聚类中心构成新的特征图集合,以聚类后的特征图集作为数据集训练分类... 针对卷积层存在的特征冗余问题,提出了一种基于卷积神经网络的特征图聚类方法。首先通过预训练网络参数提取网络最后一层卷积层的特征图,然后对特征图进行聚类操作,取聚类中心构成新的特征图集合,以聚类后的特征图集作为数据集训练分类器。将有监督的深度学习方法与传统的机器学习方法相结合,使用特征图聚类进行特征去冗余让网络学习到更有效的特征。去冗余后的特征使用神经网络分类器在fer2013测试集上达到了71.67%准确率,在CK+测试集上达到86.98%准确率,证明了该人脸表情识别方法的有效性。 展开更多
关键词 卷积神经网络 特征冗余 特征图聚类 表情识别
下载PDF
一种基于卷积神经网络的人脸表情自动识别方法 被引量:3
20
作者 邹建成 邓豪 《北方工业大学学报》 2019年第5期51-56,共6页
针对传统机器学习方法在人脸表情识别上存在特征提取繁琐、表情识别准确率不高的问题,提出一种基于深度学习的人脸表情自动识别方法.设计了一个卷积神经网络模型,以原始图像数据为输入,中间以卷积层和池化层交替作为隐层进行特征自动提... 针对传统机器学习方法在人脸表情识别上存在特征提取繁琐、表情识别准确率不高的问题,提出一种基于深度学习的人脸表情自动识别方法.设计了一个卷积神经网络模型,以原始图像数据为输入,中间以卷积层和池化层交替作为隐层进行特征自动提取,最后将提取到的特征数据映射到全连接层,并采用Softmax函数作为分类器计算分类得分概率,实现人脸表情的自动识别分类.在公开的人脸表情数据集CK+上进行实验,结果表明本文方法能更准确地识别人脸表情. 展开更多
关键词 表情识别 特征提取 深度学习 卷积神经网络
下载PDF
上一页 1 2 35 下一页 到第
使用帮助 返回顶部