期刊文献+
共找到5,123篇文章
< 1 2 250 >
每页显示 20 50 100
基于卷积神经网络的纸张表面缺陷智能检测算法研究 被引量:1
1
作者 王娟 王卫斌 康晓梅 《造纸科学与技术》 2024年第3期115-118,共4页
针对纸张缺陷检测领域中如何有效提升缺陷特征提取能力、提高检测精度以及减少小目标缺陷漏检的难题,创新性地提出了一种基于改进Faster R-CNN算法的检测方法。该方法通过采用ResNet-50代替传统的VGG16作为特征提取的骨干网络,有效地增... 针对纸张缺陷检测领域中如何有效提升缺陷特征提取能力、提高检测精度以及减少小目标缺陷漏检的难题,创新性地提出了一种基于改进Faster R-CNN算法的检测方法。该方法通过采用ResNet-50代替传统的VGG16作为特征提取的骨干网络,有效地增强了对纸张缺陷特征的捕获能力;进一步引入CBAM模块,实现了对空间及通道注意力的双重优化,显著提升了缺陷检测的准确度。此外,通过将ROI-Pooling技术升级为ROI-Align技术,本方法进一步增强了模型对纸张缺陷检测的泛化性能。经验证,该改进算法在常见纸张缺陷检测方面的平均精度达到了98%,不仅显著提高了检测精度,还有效减少了小目标缺陷的漏检,降低了错误检测率,为纸张缺陷检测技术的发展提供了新的思路和方法。 展开更多
关键词 卷积神经网络 纸张 缺陷 Faster R-CNN算法 注意力机制
下载PDF
基于SVM-SMOTE算法的一维卷积神经网络电力系统暂态稳定评估模型
2
作者 袁梦薇 何宇 王旭 《智能计算机与应用》 2024年第7期50-56,共7页
为了提高电力系统运行稳定性,降低大停电事故发生的概率,本文提出了一种基于SVM-SMOTE算法的一维卷积神经网络暂态稳定评估模型。为了避免人工特征选择引入的主观偏差对模型预测性能的影响,本文选择来自PMU的底层量测数据作为输入特征,... 为了提高电力系统运行稳定性,降低大停电事故发生的概率,本文提出了一种基于SVM-SMOTE算法的一维卷积神经网络暂态稳定评估模型。为了避免人工特征选择引入的主观偏差对模型预测性能的影响,本文选择来自PMU的底层量测数据作为输入特征,并采用一维卷积神经网络(1D-CNN)捕捉输入特征的时序信息;考虑数据集样本不平衡带来的预测精度下降问题,采用SVM-SMOTE算法对样本进行均衡化。算例仿真结果表明,本文所提出的模型实现了端到端的时序特征提取和暂态稳定评估,可满足在线评估准确性、快速性和可靠性的要求,且有效解决了不平衡数据集中失稳样本漏判率高的问题。 展开更多
关键词 电力系统 暂态稳定评估 SVM-SMOTE算法 一维卷积神经网络
下载PDF
基于遗传-卷积神经网络算法的废水处理预测模型研究
3
作者 陈树龙 黎志伟 +1 位作者 黄祖安 牛国强 《广东化工》 CAS 2024年第15期110-112,109,共4页
在废水生物处理过程建立出水COD与出水SS的预测模型中,针对卷积神经网络在设计时没有规律遵循并很难保证网络最优化的问题,提出了一种基于遗传算法降维的卷积神经网络优化方法。本文将遗传算法(GA)与卷积神经网络(CNN)耦合起来形成一种... 在废水生物处理过程建立出水COD与出水SS的预测模型中,针对卷积神经网络在设计时没有规律遵循并很难保证网络最优化的问题,提出了一种基于遗传算法降维的卷积神经网络优化方法。本文将遗传算法(GA)与卷积神经网络(CNN)耦合起来形成一种新颖的混合算法--GA-CNN算法,并将该算法与CNN算法和BP神经网络的预测效果进行对比。仿真结果表明,对于出水COD的浓度预测,GA-CNN的预测性能相比于CNN提升了13.66%,相比于BP提升了19.40%,其中GA-CNN算法的最优预测效果如下:均方根误差(RMSE)为3.5303,平均绝对百分比误差(MAPE)为3.92%,决定系数(R^(2))为0.7195。对于出水SS的浓度预测,GA-CNN的预测性能相比于CNN提升了9.26%,相比于BP提升了13.43%,其中GA-CNN算法的最优预测效果如下:均方根误差(RMSE)为0.5883,平均绝对百分比误差为1.99%,决定系数(R^(2))为0.6770。 展开更多
关键词 废水生物处理 遗传算法 卷积神经网络
下载PDF
基于卷积神经网络GoogLeNet算法构建颅内动脉瘤诊断模型
4
作者 詹翔 王艺任 +5 位作者 彭艳 张容 向红俐 巩佳利 庞皓文 周平 《西南医科大学学报》 2024年第4期339-344,共6页
目的评价基于卷积神经网络的GoogLeNet算法在颅内动脉瘤自动分类诊断中的应用效果。方法本项研究回顾性收集了2020年1月至2023年1月在西南医科大学附属医院进行头部CT扫描的234例颅内动脉瘤患者和正常对照者的计算机断层扫描血管造影图... 目的评价基于卷积神经网络的GoogLeNet算法在颅内动脉瘤自动分类诊断中的应用效果。方法本项研究回顾性收集了2020年1月至2023年1月在西南医科大学附属医院进行头部CT扫描的234例颅内动脉瘤患者和正常对照者的计算机断层扫描血管造影图像作为研究对象,采用Pytorch框架构建基于GoogLeNet算法的卷积神经网络模型,并使用He初始化方法和Adam优化器进行模型参数初始化和优化,采用交叉熵作为损失函数,并使用批标准化和dropout技术进行模型训练和防止过拟合。结果基于GoogLeNet算法构建的颅内动脉瘤诊断模型在测试集上获得了较高的准确度和较低的损失函数值,受试者工作特征曲线显示训练集的曲线下面积为0.891,测试集为0.851,证明了该模型在颅内动脉瘤诊断中具有很好的应用前景。结论基于卷积神经网络的GoogLeNet算法可以有效地应用于颅内动脉瘤诊断,并且具有较高的准确度和较低的损失函数值,可以为颅内动脉瘤的早期诊断和治疗提供参考依据。 展开更多
关键词 深度学习 卷积神经网络 颅内动脉瘤 诊断模型 人工智能
下载PDF
基于卷积神经网络算法的稀土酸度自动滴定技术研究
5
作者 曹靖 张帅 陈吉文 《实验与分析》 2024年第2期1-5,共5页
如今稀土产业发展迅速,市场需求越来越大,应用的范围也越来越广,需建立一个简便易操作且适用于测定各类稀土酸度的方法。目前传统稀土酸度检测方法存在效率低、准确度低、滴定终点差异大等问题,难以满足实时在线检测的需要。本文提出一... 如今稀土产业发展迅速,市场需求越来越大,应用的范围也越来越广,需建立一个简便易操作且适用于测定各类稀土酸度的方法。目前传统稀土酸度检测方法存在效率低、准确度低、滴定终点差异大等问题,难以满足实时在线检测的需要。本文提出一种基于卷积神经网络算法的稀土酸度在线分析仪,可以助力在线检测的顺利进行。卷积神经网络算法是通过高清工业摄像头记录样品在滴定过程中的溶液颜色的变化,对溶液进行实时图像特征提取和学习,从而有效、准确地实现化学反应过程中溶液颜色的自动识别,配合步进电机和注射泵等部件实现自动滴定过程。图像识别本质上是对图像信息进行特征提取,而卷积神经网络算法有着传统识别方法不具备的优点,比如能够自行训练、识别速度更快、所需特征更少等。本仪器将自动滴定与卷积神经网络相结合,实现了滴定流程的自动化取样和前处理、滴定过程、终点判定等过程的一体化,且仪器能够同时进行五个样品的滴定试验,很大程度上提高了滴定效率和精度。 展开更多
关键词 卷积神经网络算法 自动滴定 稀土酸度 自动取样
下载PDF
基于人工神经网络智能算法的9310钢本构模型优化 被引量:1
6
作者 施文鹏 孙岑花 +2 位作者 李佳俊 王宇航 董显娟 《精密成形工程》 北大核心 2024年第3期171-180,共10页
目的研究9310钢在变形温度为800~1200℃、应变速率为0.01~50s-1和高度压下量为70%条件下的热变形行为,建立预测效果相对较好的9310钢本构模型。方法使用Gleeble-3800热模拟机对9310钢进行等温恒应变速率热压缩实验,基于热压缩实验数据,... 目的研究9310钢在变形温度为800~1200℃、应变速率为0.01~50s-1和高度压下量为70%条件下的热变形行为,建立预测效果相对较好的9310钢本构模型。方法使用Gleeble-3800热模拟机对9310钢进行等温恒应变速率热压缩实验,基于热压缩实验数据,分析了应变速率对9310钢流动软化效应的影响,建立了考虑应变补偿的Arrhenius本构模型与支持向量回归(SVR)本构模型,并进行了模型精度分析,之后引入人工神经网络(ANN)智能算法优化了Arrhenius本构模型。结果与变形温度相比,应变速率对9310钢流动软化效应的影响更为显著。相较于支持向量回归(SVR)本构模型,考虑应变补偿的Arrhenius本构模型精度更高,其相关系数R为0.9934,平均相对误差(AARE)和均方误差(MSE)分别为0.0556和89.362,它在预测高应变速率(1、10、50 s-1)流动应力时出现了较大偏差,经ANN智能算法优化后,相关系数R提高至0.9991,AARE和MSE分别降至0.0199和9.998,且绝对误差在±10MPa以内的预测流动应力占比为98.34%。结论在低应变速率(0.01 s-1)下软化效应更强,在高应变速率(10 s-1)下再结晶程度较低,软化效应较弱。ANN智能算法优化后的Arrhenius本构模型具有较高的精度,能较准确地预测9310钢的流动行为。 展开更多
关键词 9310钢 本构模型 Arrhenius型本构模型 人工神经网络(ANN) 智能算法优化
下载PDF
基于双输入输出卷积神经网络代理模型的油藏自动历史拟合研究
7
作者 陈旭 张凯 +3 位作者 刘晨 张金鼎 张黎明 姚军 《油气地质与采收率》 CAS CSCD 北大核心 2024年第3期165-177,共13页
传统油藏自动历史拟合方法需进行多次计算耗时的油藏数值模拟,而深度学习代理模型可以实现高效且精度近似的油藏数值模拟替代计算。在基于深度学习代理模型的油藏自动历史拟合方法中,通常将采用油藏自动历史拟合方法进行调整的油藏不确... 传统油藏自动历史拟合方法需进行多次计算耗时的油藏数值模拟,而深度学习代理模型可以实现高效且精度近似的油藏数值模拟替代计算。在基于深度学习代理模型的油藏自动历史拟合方法中,通常将采用油藏自动历史拟合方法进行调整的油藏不确定性参数作为深度学习代理模型的输入参数。现有的深度学习代理模型常为单一输入输出的神经网络模型架构,并未考虑油藏自动历史拟合方法需要对多个油藏不确定性参数进行调整,且需要训练多个深度学习代理模型以实现对油藏含水饱和度场分布及压力场分布的预测。为此,提出了一种基于双输入输出卷积神经网络代理模型的油藏自动历史拟合方法,将油藏渗透率场分布及相对渗透率参数作为输入,使用双输入输出卷积神经网络同时对油藏含水饱和度场分布及压力场分布进行预测,利用Peaceman方程计算产量,并耦合到多重数据同化集合平滑器(ES-MDA)方法中,对油藏渗透率场分布及相对渗透率参数进行反演更新,实现较为高效的油藏自动历史拟合求解。研究结果表明:双输入输出卷积神经网络代理模型在指定时间步的油藏含水饱和度场分布、压力场分布的预测精度均为93%以上。相较于传统油藏自动历史拟合方法,基于双输入输出卷积神经网络代理模型的油藏自动历史拟合方法避免了多次调用油藏数值模拟器的计算耗时问题,提高了拟合效率。 展开更多
关键词 油藏自动历史拟合 油藏数值模拟 深度学习 代理模型 双输入输出卷积神经网络
下载PDF
并联卷积神经网络的近红外光谱定量分析模型
8
作者 于水 宦克为 +1 位作者 刘小溪 王磊 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第6期1627-1635,共9页
近红外光谱分析已成为工农业生产过程质量监控领域中不可或缺的重要分析手段之一,在食品、农业、医药等定性定量分析领域被广泛应用。预测精度高、运行速度快、泛化能力强的近红外光谱预测模型可用于不同物质的定性定量分析。但由于近... 近红外光谱分析已成为工农业生产过程质量监控领域中不可或缺的重要分析手段之一,在食品、农业、医药等定性定量分析领域被广泛应用。预测精度高、运行速度快、泛化能力强的近红外光谱预测模型可用于不同物质的定性定量分析。但由于近红外光谱数据量的激增,传统的近红外光谱建模方法已经出现明显的不足。随着人工智能技术的不断发展,深度学习算法在近红外光谱分析领域得到了广泛应用。提出了一种基于并联卷积神经网络的近红外光谱定量分析模型(PaBATunNet)。该模型由1个一维卷积层、1个并联卷积模块(Module)、1个展平层、4个全连接层和1个参数调节器(PR)组成,Module模块包括5个子模块分别对光谱数据进行线性及非线性多维特征提取,并通过Concatenate函数将提取后的光谱特征数据进行拼接,PR模块通过调节优化PaBATunNet模型参数,提高模型预测精度。基于Gard-CAM思想给出了PaBATunNet模型高贡献度特征波长,增加了PaBATunNet模型的可解释性。以谷物、柴油、啤酒、牛奶四组公开的近红外光谱数据为例,将PaBATunNet模型的预测结果与偏最小二乘(PLS)、主成分回归(PCR)、支持向量机(SVM)和BP神经网络(BP)模型的预测结果进行比较。结果表明,与PLS相比,PaBATunNet模型在谷物、柴油、啤酒、牛奶数据集的预测精度上分别提高了30.0%、40.7%、43.0%、52.8%;与PCR相比,PaBATunNet模型的预测精度分别提高了28.8%、35.9%、40.8%、52.2%;与SVM相比,PaBATunNet模型的预测精度分别提高了45.5%、37.4%、45.3%、54.7%;与BP相比,PaBATunNet模型的预测精度分别提高了7.9%、32.4%、90.1%、62.0%。基于并联卷积神经网络的近红外光谱建模方法相比于传统建模方法解决了模型预测精度低、运行时间长、泛化能力差以及可解释性不强等问题,可有效应用于工农业生产中不同物质的定量分析,为建立快速、无损、高精度的近红外光谱定量分析模型提供了科学基础。 展开更多
关键词 近红外光谱 深度学习 并联卷积神经网络 定量分析 预测模型
下载PDF
基于遗传算法优化的含氢Ti65合金人工神经网络本构模型的构建
9
作者 朱铭 夏敏 +3 位作者 田壵 邓磊 金俊松 王新云 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第8期232-239,共8页
本研究对不同氢含量(未置氢、0.13 wt.%、0.25 wt.%、0.34 wt.%和0.43 wt.%氢)的Ti65合金试样在其α+β两相区和β单相区、0.001 s^(-1)应变速率范围内进行等温压缩,研究了含氢Ti65合金的高温流变行为,建立了综合考虑氢含量、变形温度... 本研究对不同氢含量(未置氢、0.13 wt.%、0.25 wt.%、0.34 wt.%和0.43 wt.%氢)的Ti65合金试样在其α+β两相区和β单相区、0.001 s^(-1)应变速率范围内进行等温压缩,研究了含氢Ti65合金的高温流变行为,建立了综合考虑氢含量、变形温度、应变、应变速率的含氢Ti65合金GA-BP神经网络本构模型,并将所建模型通过二次开发集成入有限元软件中,对含氢Ti65合金等温热压缩过程进行模拟。结果表明:4-12-12-1结构的GA-BP神经网络本构模型的相关系数和平均绝对误差分别为0.9982和0.46%,模型具有较高的预测精度和泛化能力,能够用于局部置氢Ti65合金热塑成形过程的分析。 展开更多
关键词 置氢处理 Ti65合金 人工神经网络 遗传算法 本构模型
下载PDF
求解双曲型方程的半离散卷积神经网络算法
10
作者 汪浏博 郑素佩 +1 位作者 张蕊 封建湖 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2024年第6期724-731,共8页
双曲守恒律方程的间断解对数值算法要求严格。通常传统低阶数值算法构造简单,但数值结果的分辨率较低,且依赖于网格。机器学习方法虽不依赖于网格,且适用于处理复杂场景下的问题(如高维问题),但在求间断解时可能出现移位或抹平现象。将... 双曲守恒律方程的间断解对数值算法要求严格。通常传统低阶数值算法构造简单,但数值结果的分辨率较低,且依赖于网格。机器学习方法虽不依赖于网格,且适用于处理复杂场景下的问题(如高维问题),但在求间断解时可能出现移位或抹平现象。将机器学习方法与传统低阶格式相结合,在空间上采用低阶有限体积格式,在权重系数优化上采用卷积神经网络,从而实现基于较少节点便可得到高分辨率数值结果。数值算例验证了算法的性能,在求解连续及间断问题时均能得到高分辨率数值结果,且未出现移位、抹平现象。 展开更多
关键词 双曲守恒律方程 有限体积法 卷积神经网络模型
下载PDF
基于混合优化算法和深度神经网络模型结合的致密砂岩气藏裂缝参数优化
11
作者 罗山贵 赵玉龙 +4 位作者 肖红林 陈伟华 贺戈 张烈辉 杜诚 《天然气工业》 EI CAS CSCD 北大核心 2024年第9期140-151,共12页
水平井分段压裂是致密砂岩气藏的主要开发方式,其中水力压裂裂缝参数的合理设计对于气藏的经济效益开发至关重要。基于群智能优化算法和机器学习代理模型的自动优化方法存在所需数值模拟次数多、收敛速度慢和代理模型更新复杂等问题,且... 水平井分段压裂是致密砂岩气藏的主要开发方式,其中水力压裂裂缝参数的合理设计对于气藏的经济效益开发至关重要。基于群智能优化算法和机器学习代理模型的自动优化方法存在所需数值模拟次数多、收敛速度慢和代理模型更新复杂等问题,且依靠现场工程师经验和正交实验等传统方法难以获得最佳的裂缝参数设计。为此,建立了一种新的基于混合优化算法和自适应深度神经网络(DNN)结合的致密气藏裂缝参数优化方法。首先,混合优化算法采用遗传算法(GA)和贝叶斯自适应直接搜索(BADS)之间循环迭代的混合策略。在自适应学习过程中,提出了以“最大平均距离点”作为最不确定解,同时辅以最有希望解和少量拉丁超立方采样解共同更新优化过程中的DNN代理模型。随后,将建立的优化方法用于非均质致密砂岩气藏裂缝参数优化。研究结果表明:(1)在标准测试函数和低维裂缝参数优化问题上,GA+BADS混合优化算法表现出了显著优于GA的寻优速度;(2)针对高维裂缝参数优化问题,GA+BADS混合优化算法在约1/2的GA总数值模拟次数下提高了131万元的经济净现值(NPV),收敛速度和寻优精度都明显增加;(3)相比于GA+BADS混合优化算法,在获得相同NPV时,自适应DNN代理加速优化可再减少24.54%的数值模拟运算次数。结论认为,该优化方法显著提升了优化效率,为解决非常规油气藏中水力压裂裂缝参数设计问题提供了一套可行且高效的智能优化方法,将有力促进非常规油气的规模效益开发。 展开更多
关键词 致密气 沙溪庙组 裂缝参数优化 混合优化算法 深度神经网络 自适应学习 代理模型
下载PDF
基于卷积神经网络的福建省区域滑坡灾害预警模型 被引量:2
12
作者 董力豪 刘艳辉 +1 位作者 黄俊宝 刘海宁 《水文地质工程地质》 CSCD 北大核心 2024年第1期145-153,共9页
福建省滑坡灾害频发,开展区域尺度上的滑坡灾害预警是防灾减灾的重要手段,但由于滑坡成灾机理复杂,传统的区域滑坡预警方法存在精度不足等问题。深度学习是指通过构建神经网络模型进行特征的提取、抽象、表示与学习的技术,是机器学习的... 福建省滑坡灾害频发,开展区域尺度上的滑坡灾害预警是防灾减灾的重要手段,但由于滑坡成灾机理复杂,传统的区域滑坡预警方法存在精度不足等问题。深度学习是指通过构建神经网络模型进行特征的提取、抽象、表示与学习的技术,是机器学习的一种。卷积神经网络作为一种经典的深度学习算法,具有比传统机器学习更强大的分类能力与表征能力。文章以福建省为研究区,将卷积神经网络引入滑坡灾害预警领域,构建福建省区域滑坡预警模型,过程及结果如下:(1)采用SMOTE优化算法对2010—2018年福建省滑坡灾害样本库进行优化,扩充正样本的个数,将正负样本比例从1∶3.4扩充到1∶2,样本总量达到18040个;(2)构建卷积神经网络模型结构,模型结构包括一个输入层、两个卷积层、两个最大池化层和一个全连接层以及一个输出层;(3)使用卷积神经网络对优化后的样本(2010—2018年样本的80%作为训练集)进行训练,并用贝叶斯优化算法优化模型超参数,得到福建省区域滑坡预警模型;(4)以2010—2018年样本的20%作为测试集对模型进行测试,采用混淆矩阵、ROC曲线进行模型测试,结果显示模型准确度为0.96~0.97,AUC值达到0.977,模型精度与泛化能力良好;(5)以2019年汛期滑坡灾害实况作为正样本,通过时空采样的方法采集负样本,构建2019年区域滑坡样本校验集(样本数603个),对模型进行进一步实况校验,采用混淆矩阵、ROC曲线进行模型校验,结果显示模型准确度为0.75~0.85,AUC值为0.852。虽然仅用了2019年汛期的滑坡实况样本进行校验,但也达到较好的效果。将卷积神经网络算法应用到区域滑坡预警中,为建立区域滑坡预警模型提供了一种新的途径,初步校验表明,模型效果良好,今后将在福建省对模型进行进一步的应用与校验。 展开更多
关键词 滑坡灾害 预警模型 深度学习 卷积神经网络 模型构建
下载PDF
基于非洲秃鹫算法优化卷积神经网络的重叠峰解析方法
13
作者 牛传乐 李芳 +1 位作者 任顺 陆安祥 《科学技术与工程》 北大核心 2024年第16期6592-6599,共8页
利用光谱仪器检测土壤中重金属时,由于仪器分辨率较低,峰位相近元素的特征峰会产生重叠。光谱重叠峰严重影响定量分析结果的准确性,为了得到准确的重金属含量需要进行光谱重叠峰分解。提出利用非洲秃鹫算法优化卷积神经网络(AVOA-CNN)... 利用光谱仪器检测土壤中重金属时,由于仪器分辨率较低,峰位相近元素的特征峰会产生重叠。光谱重叠峰严重影响定量分析结果的准确性,为了得到准确的重金属含量需要进行光谱重叠峰分解。提出利用非洲秃鹫算法优化卷积神经网络(AVOA-CNN)的重叠峰解析方法。首先,利用高斯函数模型模拟出150个双高斯含噪光谱重叠峰和43个三高斯含噪光谱重叠峰,选择不同小波基函数进行光谱数据去噪,以信噪比和均方根误差(root mean square error, RMSE)为评价指标,最终确定coif 3小波基函数,使用导数法进行光谱重叠峰预处理。然后,使用AVOA-CNN获得卷积神经网络(convolutional neural network, CNN)预测结果,解析结果表明:AVOA-CNN成功分解重叠峰且准确率高,双高斯光谱重叠峰和三高斯光谱重叠峰参数(峰强度,峰位,峰宽)的最大相对误差平均值分别为3.15%和5.90%。最后对比麻雀搜索算法优化CNN、CNN与AVOA-CNN,结果显示AVOA-CNN模型预测准确率最高。 展开更多
关键词 光谱仪器 重叠峰解析 非洲秃鹫算法(AVOA) 卷积神经网络(CNN)
下载PDF
基于深度卷积神经网络的汽车图像分类算法与加速研究 被引量:3
14
作者 黄佳美 张伟彬 熊官送 《现代电子技术》 北大核心 2024年第7期140-144,共5页
在非法占用公交车道违规车辆等领域的边缘计算与识别中,针对基于深度卷积神经网络的图像物体分类算法模型算力需求大与边缘设备部署后有限资源的突出矛盾,如何设计边缘计算设备的加速单元以保证分类算法的精度与实时性具有重要意义。针... 在非法占用公交车道违规车辆等领域的边缘计算与识别中,针对基于深度卷积神经网络的图像物体分类算法模型算力需求大与边缘设备部署后有限资源的突出矛盾,如何设计边缘计算设备的加速单元以保证分类算法的精度与实时性具有重要意义。针对上述问题,提出一种基于深度卷积神经网络的公交分类算法,该方法在现场可编程逻辑门阵列上实现了公交车图像分类算法的加速。通过基于迁移学习方法对ResNet50预训练模型进行微调,采用嵌入式端的推理加速实现对模型的推理,并对FPGA加速方案进行推理部署实现。结果表明,该算法具有硬件配置灵活、信息处理加速快的优点,这为实现神经网络在嵌入式平台的高效、高速应用提供了有效解决方案。 展开更多
关键词 图像分类 边缘计算 卷积神经网络 迁移学习 ResNet50模型 加速推理
下载PDF
基于卷积神经网络算法的城市轨道交通施工人员不安全行为智能识别技术 被引量:2
15
作者 郭飞 孔恒 乔国刚 《城市轨道交通研究》 北大核心 2024年第3期230-233,239,共5页
[目的]施工人员的不安全行为是城市轨道交通施工事故发生的根本因素,传统的管理模式在约束人的不安全行为方面存在不足,因此需借助高精度定位技术和智能识别技术,从主观上消除事故隐患。[方法]介绍了城市轨道交通施工人员不安全行为的... [目的]施工人员的不安全行为是城市轨道交通施工事故发生的根本因素,传统的管理模式在约束人的不安全行为方面存在不足,因此需借助高精度定位技术和智能识别技术,从主观上消除事故隐患。[方法]介绍了城市轨道交通施工人员不安全行为的产生机理。结合UWB(超宽带无线通信)高精度定位技术、摄像机自标定技术及基于卷积神经网络算法的智能识别技术,搭建了具有定位、感知、识别、预警及通信功能的一体化智能管理平台。以安全帽识别为例,构建了安全帽识别拓扑流程图,对基于卷积神经网络算法的施工人员不安全行为识别的算法进行了测试。[结果及结论]测试结果表明,该算法可实现对施工现场未佩戴安全帽人员的识别,验证了该算法的准确性。该技术实现了对城市轨道交通施工人员不安全行为的智能识别预警。 展开更多
关键词 城市轨道交通 施工安全 不安全行为 智能识别技术 卷积神经网络算法
下载PDF
一种基于一维卷积神经网络的试井模型智能识别方法
16
作者 齐占奎 张新鹏 +2 位作者 刘旭亮 查文舒 李道伦 《油气井测试》 2024年第2期72-78,共7页
为提高试井分析工作效率,实现试井模型的自动识别,提出了基于一维卷积神经网络(1D CNN)的试井模型智能识别方法。根据实测数据的特点,提出基于理论曲线构建样本库的原则与方法,并构建了4种常用油藏模型的训练样本库;建立了一维卷积神经... 为提高试井分析工作效率,实现试井模型的自动识别,提出了基于一维卷积神经网络(1D CNN)的试井模型智能识别方法。根据实测数据的特点,提出基于理论曲线构建样本库的原则与方法,并构建了4种常用油藏模型的训练样本库;建立了一维卷积神经网络模型,将样本库中双对数曲线的压力变化和压力导数数据作为输入,油藏类别作为网络输出训练及优化网络,总识别准确率可达99.16%,敏感度均在98%以上。经4口井实例应用,正确识别试井模型的概率大于0.99,与二维卷积神经网络相比,1D CNN显著降低了计算复杂度和时间成本,加快了训练速度。这表明基于试井理论所构建的样本库是有效的,能满足实测数据模型识别的需求;同时证明了方法的有效性、实用性和普适性。 展开更多
关键词 试井模型 一维卷积神经网络 智能识别 深度学习 自动解释 模型识别 样本库
下载PDF
模型误差影响下基于CNN+BiLSTM神经网络的非圆信号目标直接跟踪算法
17
作者 尹洁昕 王鼎 +1 位作者 杨欣 杨宾 《电子学报》 EI CAS CSCD 北大核心 2024年第4期1315-1329,共15页
针对运动观测阵列状态误差与接收频率抖动同时影响下的非圆信号无源跟踪问题,提出了一种基于卷积神经网络(Convolutional Neural Network,CNN)+双向长短时记忆网络(Bi-directional Long Short-Term Memory,BiL⁃STM)的直接跟踪算法.该算... 针对运动观测阵列状态误差与接收频率抖动同时影响下的非圆信号无源跟踪问题,提出了一种基于卷积神经网络(Convolutional Neural Network,CNN)+双向长短时记忆网络(Bi-directional Long Short-Term Memory,BiL⁃STM)的直接跟踪算法.该算法首先利用多运动观测阵列信号各频带间的相关性与辐射源信号的非圆特性,建立模型误差影响下的扩展多站观测矢量;接着利用多个观测时隙内扩展多站观测矢量的信号子空间构造空时特征输入序列;然后设计基于CNN与BiLSTM混合神经网络的直接跟踪模型,通过训练实现对非圆目标的轨迹矢量直接估计.本文算法是从原始数据信号子空间中估计轨迹矢量的直接跟踪模式,相比传统“观测参数估计+滤波轨迹跟踪”的两步估计模式,具有更高的估计精度.由于本文算法在神经网络训练过程中学习到模型误差的信息,因此能够实现对多种误差的校正.仿真结果表明,本文算法较传统两步跟踪算法与现有直接跟踪算法均具有更高的轨迹估计精度,能够明显提升模型误差影响下多站协同跟踪的鲁棒性. 展开更多
关键词 直接跟踪 非圆信号 模型误差 卷积神经网络 双向长短时记忆网络
下载PDF
基于Winograd算法的3D卷积神经网络权重剪枝方法
18
作者 邹贵 秦子然 +5 位作者 吴捷 刘国梁 赵军 王迎雪 林晖 林巍峣 《长江信息通信》 2024年第8期1-3,17,共4页
针对3D卷积神经网络在资源有限的环境下高计算成本的挑战,文章提出了一种融合Winograd算法和网络剪枝技术的3D卷积神经网络优化方法。首先,将标准3D卷积层替换为效率更高的3D Winograd层,实现对卷积操作的优化。接着,对3D Winograd层的... 针对3D卷积神经网络在资源有限的环境下高计算成本的挑战,文章提出了一种融合Winograd算法和网络剪枝技术的3D卷积神经网络优化方法。首先,将标准3D卷积层替换为效率更高的3D Winograd层,实现对卷积操作的优化。接着,对3D Winograd层的权重进行重要性评估,保留重要的权重单元并剪枝获得稀疏模型。最后,对稀疏模型进行重训练,恢复剪枝后网络的性能。通过结合Winograd算法和网络剪枝技术,能够在提高识别准确度的同时,显著降低了模型的计算需求。实验结果证实,与其他优化技术相比,本方法能有效减少计算资源消耗,同时保持甚至提高识别性能。 展开更多
关键词 3D卷积神经网络优化 Winograd算法 网络剪枝
下载PDF
基于卷积神经网络模块化搜索的高效电子鼻多气体分类算法
19
作者 祝煜荻 曾敏 +2 位作者 杨建华 胡南滔 杨志 《数字通信世界》 2024年第10期7-9,共3页
该文设计了一种基于格拉姆角和场的传感器信号转图方法,并提出了一种基于AlexNet的卷积神经网络模块化结构搜索方法(block-GS)。实验结果表明,block-GS方法能够搜索到性能优秀的网络结构,在两个气体数据集上的分类准确率分别达到92.11%... 该文设计了一种基于格拉姆角和场的传感器信号转图方法,并提出了一种基于AlexNet的卷积神经网络模块化结构搜索方法(block-GS)。实验结果表明,block-GS方法能够搜索到性能优秀的网络结构,在两个气体数据集上的分类准确率分别达到92.11%和93.33%,比普通网格搜索提高了近5%。此方法有望成为电子鼻模式识别算法设计的有效解决途径之一。 展开更多
关键词 电子鼻 格拉姆角和场 卷积神经网络 网格搜索 气体分类算法
下载PDF
高效通道注意力结合卷积神经网络的近红外光谱分析模型研究
20
作者 王妞 宦克为 +2 位作者 傅钲淇 刘赋伟 王迪 《长春理工大学学报(自然科学版)》 2024年第1期16-22,共7页
近红外光谱分析技术有无损、高效的特点,在各领域都有广泛应用。但传统分析模型在面对近红外光谱数据量激增时往往出现预测精度不高、泛化能力差等问题。为此,提出一种基于卷积神经网络(CNN)与高效通道注意力(ECA)模块相结合的近红外光... 近红外光谱分析技术有无损、高效的特点,在各领域都有广泛应用。但传统分析模型在面对近红外光谱数据量激增时往往出现预测精度不高、泛化能力差等问题。为此,提出一种基于卷积神经网络(CNN)与高效通道注意力(ECA)模块相结合的近红外光谱分析模型(CNNECANet),该模型由8个一维卷积层、1个ECA模块、4个最大池化层、1个展平层、2个全连接层和1个参数优化器组成。ECA模块由1个全局平均池化、1个一维卷积层和1个Sigmoid激活函数组成。以啤酒、牛奶、柴油、谷物的近红外光谱公共数据为例,将CNNECANet与常用建模方法进行比较,CNNECANet比PLS的预测精度分别提高了30.3%、14.1%、29.5%、48.4%;CNNECANet比SVR的预测精度分别提高了33.5%、17.6%、39.0%、50.0%;CNNECANet比BP神经网络模型的预测精度分别提高了80.0%、29.0%、7.2%、42.7%。该模型具有更好的预测精度和鲁棒性,解决了传统近红外光谱建模算法容易出现过拟合、模型泛化性差等问题。 展开更多
关键词 近红外光谱 卷积神经网络 高效通道注意力 预测模型
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部