目的直接动脉血压(arterial blood pressure,ABP)连续监测是侵入式的,传统袖带式的间接血压测量法无法实现连续监测。既往利用光学体积描记术(photoplethysmography,PPG)实现了连续无创血压监测,但其为收缩压和舒张压的离散值,而非ABP...目的直接动脉血压(arterial blood pressure,ABP)连续监测是侵入式的,传统袖带式的间接血压测量法无法实现连续监测。既往利用光学体积描记术(photoplethysmography,PPG)实现了连续无创血压监测,但其为收缩压和舒张压的离散值,而非ABP波的连续值,本研究期望基于卷积神经网络-长短期记忆神经网络(CNN-LSTM)利用PPG信号波重建ABP波信号,实现连续无创血压监测。方法构建CNN-LSTM混合神经网络模型,利用重症监护医学信息集(medical information mart for intensive care,MIMIC)中的PPG与ABP波同步记录信号数据,将PPG信号波经预处理降噪、归一化、滑窗分割后输入该模型,重建与之同步对应的ABP波信号。结果使用窗口长度312的CNN-LSTM神经网络时,重建ABP值与实际ABP值间误差最小,平均绝对误差(mean absolute error,MAE)和均方根误差(root mean square error,RMSE)分别为2.79 mmHg和4.24 mmHg,余弦相似度最大,重建ABP值与实际ABP值一致性和相关性情况良好,符合美国医疗器械促进协会(Association for the Advancement of Medical Instrumentation,AAMI)标准。结论CNN-LSTM混合神经网络可利用PPG信号波重建ABP波信号,实现连续无创血压监测。展开更多
为了解决冲击噪声下长短时记忆(long short term memory,LSTM)神经网络调制信号识别方法抗冲击噪声能力弱和超参数难以确定的问题,本文提出了一种演化长短时记忆神经网络的调制识别方法。利用基于短时傅里叶变换的卷积神经网络(convolut...为了解决冲击噪声下长短时记忆(long short term memory,LSTM)神经网络调制信号识别方法抗冲击噪声能力弱和超参数难以确定的问题,本文提出了一种演化长短时记忆神经网络的调制识别方法。利用基于短时傅里叶变换的卷积神经网络(convolution neural network,CNN)去噪模型对数据集去噪;结合量子计算机制和旗鱼优化器(sailfish optimizer,SFO)设计了量子旗鱼算法(quantum sailfish algorithm,QSFA)去演化LSTM神经网络以获得最优的超参数;使用演化长短时记忆神经网络作为分类器进行自动调制信号识别。仿真结果表明,采用所设计的CNN去噪和演化长短时记忆神经网络模型,识别准确率有了大幅度的提高。量子旗鱼算法演化LSTM神经网络模型降低了传统LSTM神经网络容易陷于局部极小值或者过拟合的概率,当混合信噪比为0 dB,所提方法对11种调制信号的平均识别准确率达到90%以上。展开更多
文摘目的直接动脉血压(arterial blood pressure,ABP)连续监测是侵入式的,传统袖带式的间接血压测量法无法实现连续监测。既往利用光学体积描记术(photoplethysmography,PPG)实现了连续无创血压监测,但其为收缩压和舒张压的离散值,而非ABP波的连续值,本研究期望基于卷积神经网络-长短期记忆神经网络(CNN-LSTM)利用PPG信号波重建ABP波信号,实现连续无创血压监测。方法构建CNN-LSTM混合神经网络模型,利用重症监护医学信息集(medical information mart for intensive care,MIMIC)中的PPG与ABP波同步记录信号数据,将PPG信号波经预处理降噪、归一化、滑窗分割后输入该模型,重建与之同步对应的ABP波信号。结果使用窗口长度312的CNN-LSTM神经网络时,重建ABP值与实际ABP值间误差最小,平均绝对误差(mean absolute error,MAE)和均方根误差(root mean square error,RMSE)分别为2.79 mmHg和4.24 mmHg,余弦相似度最大,重建ABP值与实际ABP值一致性和相关性情况良好,符合美国医疗器械促进协会(Association for the Advancement of Medical Instrumentation,AAMI)标准。结论CNN-LSTM混合神经网络可利用PPG信号波重建ABP波信号,实现连续无创血压监测。
文摘为了解决冲击噪声下长短时记忆(long short term memory,LSTM)神经网络调制信号识别方法抗冲击噪声能力弱和超参数难以确定的问题,本文提出了一种演化长短时记忆神经网络的调制识别方法。利用基于短时傅里叶变换的卷积神经网络(convolution neural network,CNN)去噪模型对数据集去噪;结合量子计算机制和旗鱼优化器(sailfish optimizer,SFO)设计了量子旗鱼算法(quantum sailfish algorithm,QSFA)去演化LSTM神经网络以获得最优的超参数;使用演化长短时记忆神经网络作为分类器进行自动调制信号识别。仿真结果表明,采用所设计的CNN去噪和演化长短时记忆神经网络模型,识别准确率有了大幅度的提高。量子旗鱼算法演化LSTM神经网络模型降低了传统LSTM神经网络容易陷于局部极小值或者过拟合的概率,当混合信噪比为0 dB,所提方法对11种调制信号的平均识别准确率达到90%以上。