期刊文献+
共找到437篇文章
< 1 2 22 >
每页显示 20 50 100
基于卷积门控循环单元的波浪发电系统输出功率预测
1
作者 吴凡曈 杨俊华 +3 位作者 杨梦丽 林炳骏 梁惠溉 邱达磊 《太阳能学报》 EI CAS CSCD 北大核心 2024年第8期682-688,共7页
为高效准确预测波浪输出功率,提出卷积神经网络和门控循环单元混合模型波浪预测算法。采用间接预测方法,搭建直驱式波浪发电系统模型,运用CORREL函数分析不同波浪特征的相关性,结合卷积神经网络提取特征与高维空间中的波高关系,构造特... 为高效准确预测波浪输出功率,提出卷积神经网络和门控循环单元混合模型波浪预测算法。采用间接预测方法,搭建直驱式波浪发电系统模型,运用CORREL函数分析不同波浪特征的相关性,结合卷积神经网络提取特征与高维空间中的波高关系,构造特征向量,通过门控循环单元网络进行训练,将全连接层的输出值经反归一化后获得预测波高值,输入所搭建模型,获得波浪输出功率预测值。仿真结果表明,与其他网络模型相比,在多特征输入情况下,混合模型波浪预测算法预测效率更高、精度更准确。 展开更多
关键词 间接预测 波浪发电系统 卷积神经网络 门控循环单元 多特征输入 混合模型
下载PDF
八度卷积和双向门控循环单元结合的X光安检图像分类 被引量:3
2
作者 吴海滨 魏喜盈 +1 位作者 王爱丽 岩堀祐之 《中国光学》 EI CAS CSCD 北大核心 2020年第5期1138-1146,共9页
针对主动视觉安检方法准确率低、速度慢,不适用于实时交通安检的问题,提出了八度卷积(OctConv)和注意力机制双向门控循环单元(GRU)神经网络相结合的X光安检图像分类方法。首先,利用八度卷积代替传统卷积,对输入的特征向量进行高低分频,... 针对主动视觉安检方法准确率低、速度慢,不适用于实时交通安检的问题,提出了八度卷积(OctConv)和注意力机制双向门控循环单元(GRU)神经网络相结合的X光安检图像分类方法。首先,利用八度卷积代替传统卷积,对输入的特征向量进行高低分频,并降低低频特征的分辨率,在有效提取X光安检图像特征的同时,减少了空间冗余。其次,通过注意力机制双向GRU,动态学习调整特征权重,提高危险品分类准确率。最后,在通用SIXRay数据集上的实验表明,对8000幅测试样本的整体分类准确率(ACC)、特征曲线下方面积(AUC)、正类分类准确率(PRE)分别为98.73%、91.39%、85.44%,检测时间为36.80 s。相对于目前主流模型,本文方法有效提高了X光安检图像危险品分类的准确率和速度。 展开更多
关键词 X光安检图像 八度卷积 双向门控循环单元 注意力机制
下载PDF
基于变分模态分解的卷积神经网络−双向门控循环单元−多元线性回归多频组合短期电力负荷预测 被引量:14
3
作者 方娜 李俊晓 +1 位作者 陈浩 李新新 《现代电力》 北大核心 2022年第4期441-448,共8页
为了有效提高电力负荷预测精度,针对电力负荷非线性、非平稳性、时序性的特点,提出了一种卷积神经网络(convolutional neural networks,CNN)、双向门控循环单元(bidirectional gated recurrent unit,BiGRU)和多元线性回归(multiple line... 为了有效提高电力负荷预测精度,针对电力负荷非线性、非平稳性、时序性的特点,提出了一种卷积神经网络(convolutional neural networks,CNN)、双向门控循环单元(bidirectional gated recurrent unit,BiGRU)和多元线性回归(multiple linear regression,MLR)混合的多频组合短期电力负荷预测模型。该模型先利用关联度分析得到相似日,并将其负荷组成新的数据序列,同时使用变分模态分解(variational mode decomposition,VMD)将该数据序列进行分解,并重构成高低2种频率。对于高频分量,使用CNN-BiGRU模型进行预测;低频部分则使用MLR。最后将各个模型得出的预测结果叠加,得到最终预测结果。以2006年澳大利亚真实数据为例,进行短期电力负荷预测。仿真结果表明,相比于其他网络模型,该模型具有较高的预测精度和拟合能力,是一种有效的短期负荷预测方法。 展开更多
关键词 变分模态分解 卷积神经网络 双向门控循环单元 多元线性回归 负荷预测
下载PDF
基于卷积神经网络与门控循环单元的气液两相流流型识别方法 被引量:7
4
作者 张立峰 王智 吴思橙 《计量学报》 CSCD 北大核心 2022年第10期1306-1312,共7页
提出了一种基于卷积神经网络(CNN)与门控循环单元(GRU)的垂直管道气液两相流流型识别方法。该方法基于电阻层析成像(ERT)系统的重建图像,对其填充处理后进行离散余弦变换(DCT),求取最大、最小DCT系数的差值,选取一定帧数长度数据作为网... 提出了一种基于卷积神经网络(CNN)与门控循环单元(GRU)的垂直管道气液两相流流型识别方法。该方法基于电阻层析成像(ERT)系统的重建图像,对其填充处理后进行离散余弦变换(DCT),求取最大、最小DCT系数的差值,选取一定帧数长度数据作为网络输入,对流型进行识别。分析了输入序列长度对CNN-GRU、CNN及GRU网络分类准确的影响,确定了最佳输入向量维度分别为60、65及50,使用实验数据对3种网络进行训练、测试,结果表明,CNN-GRU网络分类准确率最高,平均流型识别准确率可达99.40%。 展开更多
关键词 计量学 流型识别 离散余弦变换 卷积神经网络 门控循环单元 电阻层析成像
下载PDF
基于卷积门控循环单元网络的储层参数预测方法 被引量:26
5
作者 宋辉 陈伟 +1 位作者 李谋杰 王浩懿 《油气地质与采收率》 CAS CSCD 北大核心 2019年第5期73-78,共6页
储层参数是储层评价的一项重要内容。针对传统储层预测方法难以摆脱线性方程的束缚及预测精度不高的问题,将卷积神经网络与门控循环单元网络相结合,提出了卷积门控循环单元网络模型。该模型不仅具备卷积神经网络局部感知的特性,还具备... 储层参数是储层评价的一项重要内容。针对传统储层预测方法难以摆脱线性方程的束缚及预测精度不高的问题,将卷积神经网络与门控循环单元网络相结合,提出了卷积门控循环单元网络模型。该模型不仅具备卷积神经网络局部感知的特性,还具备门控循环单元网络长期记忆的功能,从而具有表达数据时空特征的能力。基于某井区A井已知井段测井资料建立卷积门控循环单元网络孔隙度预测模型,预测该井区未知深度段的孔隙度,并提出变学习率训练方法。实验证明,与单一的卷积神经网络模型、门控循环单元网络模型相比,卷积门控循环单元网络模型能够更有效地提取数据特征,预测精度更高,可为储层参数的预测提供新的思路。 展开更多
关键词 储层参数预测 孔隙度 深度学习 卷积神经网络 循环神经网络 门控循环单元网络
下载PDF
基于多重注意力卷积神经网络双向门控循环单元的机械故障诊断方法研究 被引量:13
6
作者 程建刚 毕凤荣 +3 位作者 张立鹏 李鑫 杨晓 汤代杰 《内燃机工程》 CAS CSCD 北大核心 2021年第4期77-83,92,共8页
为解决传统机械故障诊断方法需要人工提取特征的不足,提出一种基于多重注意力卷积神经网络双向门控循环单元(multiple attention-convolutional neural networks-bidirectional gated recurrent unit,MA-CNN-BiGRU)的端到端的故障诊断... 为解决传统机械故障诊断方法需要人工提取特征的不足,提出一种基于多重注意力卷积神经网络双向门控循环单元(multiple attention-convolutional neural networks-bidirectional gated recurrent unit,MA-CNN-BiGRU)的端到端的故障诊断方法。首先将原始时域数据输入卷积神经网络(convolutional meural networks,CNN)进行初步特征提取并降维,然后将结果重组输入双向门控循环单元(bidirectional gated recurrent unit,BiGRU),可以有效地解决BiGRU对于过长序列数据处理困难的问题。采用美国凯斯西储大学开源轴承数据集进行训练,确定了最佳卷积层数和最佳样本长度约减比例分别为2和1/8。同时,通过在CNN和BiGRU中分别加入卷积注意力模块(convolutional block attention module,CBAM)和序列注意力模块(sequence attention module,SAM),进一步加强了模型对于关键信息的提取能力。最后实测柴油机故障振动信号试验表明:MA-CNN-BiGRU模型可以实现端到端的故障诊断,与变分模态分解(variational mode decomposition,VMD)核模糊C均值聚类算法(VMD-kernel fuzzy C-means clustering,VMD-KFCM)、VMD-反向传播神经网络(back propagation neural network,BPNN)和一维CNN等方法进行对比,MA-CNN-BiGRU模型的故障诊断性能更优。 展开更多
关键词 注意力 故障诊断 多重注意力卷积神经网络双向门控循环单元(MA-CNN-BiGRU) 端到端
下载PDF
基于卷积神经网络和双向门控循环单元网络注意力机制的情感分析 被引量:14
7
作者 张腾 刘新亮 高彦平 《科学技术与工程》 北大核心 2021年第1期269-274,共6页
传统的情感分析方法不能获取全局特征,以及否定词、转折词和程度副词的出现影响句子极性判断。在深度学习方法基础上提出了基于卷积神经网络和双向门控循环单元网络注意力机制的短文本情感分析方法。将情感积分引入卷积神经网络,利用情... 传统的情感分析方法不能获取全局特征,以及否定词、转折词和程度副词的出现影响句子极性判断。在深度学习方法基础上提出了基于卷积神经网络和双向门控循环单元网络注意力机制的短文本情感分析方法。将情感积分引入卷积神经网络,利用情感词自身信息,通过双向门控循环网络模型获取全局特征,对影响句子极性的否定词、转折词和程度副词引入注意力机制实现对这类词的重点关注,提取影响句子极性的重要信息。实验结果表明,该模型与现有相关模型相比,有效提高情感分类的准确率。 展开更多
关键词 深度学习 双向门控循环单元(Bi-GRU) 注意力机制 卷积神经网络 情感分析
下载PDF
基于自注意力机制的双向门控循环单元和卷积神经网络的芒果产量预测 被引量:12
8
作者 林靖皓 秦亮曦 +1 位作者 苏永秀 秦川 《计算机应用》 CSCD 北大核心 2020年第S01期51-55,共5页
针对影响芒果产量的相关气象要素繁多,它们与产量之间的关联关系复杂、难以用数学函数准确地描述的问题,提出一种基于自注意力机制具有长短期记忆功能的双向门控循环单元和卷积神经网络组合(Self-attention CBiGRU)模型。首先,利用CNN... 针对影响芒果产量的相关气象要素繁多,它们与产量之间的关联关系复杂、难以用数学函数准确地描述的问题,提出一种基于自注意力机制具有长短期记忆功能的双向门控循环单元和卷积神经网络组合(Self-attention CBiGRU)模型。首先,利用CNN卷积层(1D CNN)提取局部特征;其次将Self-attention机制用于进一步提取依赖特征,然后双向门控循环单元(BiGRU)会充分考虑年份之间的关联性,学习长期依赖特征;最后,利用广西某地3个气象站所收集到的24个芒果生产周期年份(从前一年第22旬到当年第21旬)每旬9个气象要素及芒果产量数据进行分析建模,建立了芒果产量预测Self-attention C-BiGRU模型。实验结果表明,Self-attention C-BiGRU模型预测的产量与实际产量的均方根误差为10.67,比支持向量回归(SVR)、误差后向传播神经网络(BPNN)、门控循环单元(GRU)、基于注意力机制的双向门控循环单元(BiGRU-Attention)、门控循环单元和卷积神经网络组合模型(GRU-CNN)、双向门控循环单元和卷积神经网络组合模型(C-BiGRU)分别平均降低了37.7%、42.1%、17.6%、4.1%、5.3%和5.9%。Selfattention C-BiGRU模型具有较高的预测准确性,对提升广西芒果产业发展、推进农业信息化有重要意义。 展开更多
关键词 芒果 产量预测 Self-attention 双向门控循环单元 卷积神经网络 循环神经网络
下载PDF
基于时间卷积网络和门控循环单元的短期用电量预测方法 被引量:13
9
作者 李扬帆 张凌浩 +3 位作者 雷勇 冉金周 叶桄希 张颉 《水电能源科学》 北大核心 2021年第8期198-201,173,共5页
针对智能电网建设环境下用电数据所呈现出的采集频率低、时变性显著等特点,提出了一种基于时间卷积网络和门控循环单元的短期用电量预测方法。考虑电类特征、环境特征和时间特征,从常见用户用电量的影响因素中筛选出模型的输入数据,分... 针对智能电网建设环境下用电数据所呈现出的采集频率低、时变性显著等特点,提出了一种基于时间卷积网络和门控循环单元的短期用电量预测方法。考虑电类特征、环境特征和时间特征,从常见用户用电量的影响因素中筛选出模型的输入数据,分别训练时间卷积网络和门控循环单元两种深度学习模型并建立所提方法的整体架构。对某地区低采集频率用电数据进行仿真分析,与传统的长短期记忆网络、一维卷积及多层感知机等方法相比,所提方法具有更高的预测精度,有效可行。 展开更多
关键词 短期用电量预测 时间卷积网络 门控循环单元 深度学习
下载PDF
基于卷积编解码器和门控循环单元的语音分离算法 被引量:7
10
作者 陈修凯 陆志华 周宇 《计算机应用》 CSCD 北大核心 2020年第7期2137-2141,共5页
在大部分基于深度学习的语音分离和语音增强算法中,把傅里叶变换后的频谱特征作为神经网络的输入特征,并未考虑到语音信号中的相位信息。然而过去的一些研究表明,尤其是在低信噪比(SNR)条件下,相位信息对于提高语音质量是必不可少的。... 在大部分基于深度学习的语音分离和语音增强算法中,把傅里叶变换后的频谱特征作为神经网络的输入特征,并未考虑到语音信号中的相位信息。然而过去的一些研究表明,尤其是在低信噪比(SNR)条件下,相位信息对于提高语音质量是必不可少的。针对这个问题,提出了一种基于卷积编解码器网络和门控循环单元(CED-GRU)的语音分离算法。首先,利用原始波形既包含幅值信息也包含相位信息的特点,在输入端以混合语音信号的原始波形作为输入特征;其次,通过结合卷积编解码器(CED)网络和门控循环单元(GRU)网络,可以有效解决语音信号中存在的时序问题。提出的改进算法在男性和男性、男性和女性、女性和女性的语音质量的感知评价(PESQ)和短时目标可懂度(STOI)方面,与基于排列不变训练(PIT)算法、基于深度聚类(DC)算法、基于深度吸引网络(DAN)算法相比,分别提高了1.16和0.29、1.37和0.27、1.08和0.3;0.87和0.21、1.11和0.22、0.81和0.24;0.64和0.24、1.01和0.34、0.73和0.29个百分点。实验结果表明,基于CED-GRU的语音分离系统在实际应用中具有较大的价值。 展开更多
关键词 卷积神经网络 卷积编解码器 门控循环单元 端到端 语音分离
下载PDF
基于膨胀卷积和门控循环单元组合的入侵检测模型 被引量:12
11
作者 张全龙 王怀彬 《计算机应用》 CSCD 北大核心 2021年第5期1372-1377,共6页
基于机器学习的入侵检测模型在网络环境的安全保护中起着至关重要的作用。针对现有的网络入侵检测模型不能够对网络入侵数据特征进行充分学习的问题,将深度学习理论应用于入侵检测,提出了一种具有自动特征提取功能的深度网络模型。在该... 基于机器学习的入侵检测模型在网络环境的安全保护中起着至关重要的作用。针对现有的网络入侵检测模型不能够对网络入侵数据特征进行充分学习的问题,将深度学习理论应用于入侵检测,提出了一种具有自动特征提取功能的深度网络模型。在该模型中,使用膨胀卷积来增大对信息的感受野并从中提取高级特征,使用门控循环单元(GRU)模型提取保留特征之间的长期依赖关系,再利用深层神经网络(DNN)对数据特征进行充分学习。与经典的机器学习分类器相比,该模型具有较高的检测率。在著名的KDD CUP99、NSL-KDD和UNSW-NB15数据集上进行的实验表明,该模型具有由于其他分类器的性能。具体来说,该模型在KDD CUP99数据集上的准确率为99.78%,在NSL-KDD数据集上的准确率为99.53%,在UNSW-NB15数据集上的准确率为93.12%。 展开更多
关键词 网络入侵检测模型 深度学习 门控循环单元 膨胀卷积 网络安全
下载PDF
改进一维卷积神经网络与双向门控循环单元的轴承故障诊断研究 被引量:8
12
作者 杨云 丁磊 张昊宇 《机械科学与技术》 CSCD 北大核心 2023年第4期538-545,共8页
针对传统智能故障诊断依赖于人工经验进行特征提取和传统卷积神经网络(Convolutional neural networks, CNN)参数过多、训练量过大且无法充分利用时间序列信息的缺点,提出一种基于改进一维卷积神经网络与双向门控循环单元的深度学习新... 针对传统智能故障诊断依赖于人工经验进行特征提取和传统卷积神经网络(Convolutional neural networks, CNN)参数过多、训练量过大且无法充分利用时间序列信息的缺点,提出一种基于改进一维卷积神经网络与双向门控循环单元的深度学习新算法。首先,该方法利用一维卷积神经网络自提取能力进行特征提取,同时设计了一个全局均值池化层替换传统卷积神经网络的全连接层,减少参数数量;其次,引入双向门控循环单元学习特征信号中的时间序列关系;最后,通过支持向量机替换传统CNN中的Softmax层进行故障分类,进一步提高诊断的准确率。实验表明,该方法将诊断的准确率提升至99.8%,并且加快了诊断的速度。通过与其他方法的对比,证明了该方法有着更高的准确率,更快的诊断速度,更好的鲁棒性。 展开更多
关键词 轴承故障诊断 卷积神经网络 双向门控循环单元 支持向量机
下载PDF
融合一维卷积神经网络和双向门控循环单元的APM车辆轮胎径向载荷识别方法 被引量:2
13
作者 曾俊玮 季元进 +3 位作者 任利惠 葛方顺 孙泽良 黄章行 《中国机械工程》 EI CAS CSCD 北大核心 2023年第3期359-368,共10页
针对轮胎载荷直接测量昂贵复杂及传统载荷识别方法精度低、鲁棒性差的现实,提出了一种融合一维卷积神经网络(1D CNN)和双向门控循环单元(BiGRU)的胶轮车辆轮胎径向载荷识别方法。充分考虑轮胎径向载荷数据的先验信息,以车辆振动响应、... 针对轮胎载荷直接测量昂贵复杂及传统载荷识别方法精度低、鲁棒性差的现实,提出了一种融合一维卷积神经网络(1D CNN)和双向门控循环单元(BiGRU)的胶轮车辆轮胎径向载荷识别方法。充分考虑轮胎径向载荷数据的先验信息,以车辆振动响应、车体位姿、运行状态等多源信息构建特征集并经特征选择保留有效的特征子集,构造多时间步输入-单时间步输出的样本用以网络训练。运用1D CNN提取信号的多维度空间特征并输入BiGRU中双向捕获时序特征,得到载荷预测的结果,结合预测精度、泛化性能、鲁棒性能修正理论模型。以APM300型车辆为例进行载荷识别,与传统算法相比,所提方法有效降低了载荷识别的误差,适用于不同运行工况,且能克服不同程度的测量噪声,在工程领域有现实应用价值。 展开更多
关键词 载荷识别 胶轮车辆 一维卷积神经网络 双向门控循环单元
下载PDF
基于注意力时间卷积网络和双向门控循环单元的轴承故障诊断
14
作者 张璐莹 侯立群 《电力科学与工程》 2023年第6期62-70,共9页
针对传统特征提取方法依赖人工经验以及传统神经网络未充分利用时间序列信息的问题,首先通过时间卷积网络的空洞因果卷积、随机丢弃层和残差结构跨时间步提取不同振动信号的特征;然后引入注意力机制获取关键信息,实现特征优化选择;再利... 针对传统特征提取方法依赖人工经验以及传统神经网络未充分利用时间序列信息的问题,首先通过时间卷积网络的空洞因果卷积、随机丢弃层和残差结构跨时间步提取不同振动信号的特征;然后引入注意力机制获取关键信息,实现特征优化选择;再利用双向门控循环单元捕捉长期依赖关系;最后通过归一化指数函数进行故障分类。实验结果表明,在不同训练样本比例下,该方法的识别精度高于一维卷积神经网络、双向长短期记忆网络、双向循环神经网络;用该方法能够有效识别轴承故障类型,且模型的泛化能力较强。 展开更多
关键词 轴承 故障诊断 时间卷积网络 注意力机制 门控循环单元
下载PDF
基于深度门控循环单元神经网络的刀具磨损状态实时监测方法 被引量:15
15
作者 陈启鹏 谢庆生 +3 位作者 袁庆霓 黄海松 魏琴 李宜汀 《计算机集成制造系统》 EI CSCD 北大核心 2020年第7期1782-1793,共12页
为监测生产加工过程中的刀具磨损状态,提出一种基于深度门控循环单元神经网络的轻量化状态监测模型。首先,预处理阶段对加速度传感器采集的时序信号进行小波阈值去噪,并将每次刀具进给产生的冗长信号划分为多个训练样本,以滤除噪声、改... 为监测生产加工过程中的刀具磨损状态,提出一种基于深度门控循环单元神经网络的轻量化状态监测模型。首先,预处理阶段对加速度传感器采集的时序信号进行小波阈值去噪,并将每次刀具进给产生的冗长信号划分为多个训练样本,以滤除噪声、改善算法的鲁棒性;然后,利用卷积神经网络(CNN)从时序信号输入中自适应地提取特征,构建深度双向门控循环单元(BiGRU)神经网络学习特征向量间的时序信息,并将Attention机制的思想引入其中,自适应地感知对磨损状态分类结果有关联的网络权重,并对其进行合理分配,避免因人工提取特征带来的复杂性和局限性。实验结果表明,所提方法能够对传感器采集的原始数据实时准确地预测刀具磨损状态,在识别精度和泛化能力上均达到了较好的效果,为实际工业场景下的刀具磨损状态监测提供了新的思路。 展开更多
关键词 刀具磨损状态 实时监测 小波去噪 卷积神经网络 双向门控循环单元 Attention机制
下载PDF
一种用于语音增强的卷积门控循环网络 被引量:12
16
作者 袁文浩 胡少东 +2 位作者 时云龙 李钊 梁春燕 《电子学报》 EI CAS CSCD 北大核心 2020年第7期1276-1283,共8页
为了充分利用含噪语音特征来提高语音增强网络的性能,基于含噪语音在时间和频率两个维度上的相关性,本文结合卷积神经网络的局部特征提取能力和门控循环单元的长期依赖建模能力,设计了一种适用于语音增强的卷积门控循环网络.该网络采用... 为了充分利用含噪语音特征来提高语音增强网络的性能,基于含噪语音在时间和频率两个维度上的相关性,本文结合卷积神经网络的局部特征提取能力和门控循环单元的长期依赖建模能力,设计了一种适用于语音增强的卷积门控循环网络.该网络采用卷积网络结构代替全连接网络结构来改进门控循环单元中的特征计算过程,从而能够更好地保留含噪语音特征中的时频结构信息.实验结果表明,与其它语音增强网络相比,本文网络在语音成分的保留和噪声成分的抑制上具有明显优势,增强后语音具有更好的语音质量和可懂度. 展开更多
关键词 语音增强 深度神经网络 门控循环单元 卷积神经网络
下载PDF
基于卷积门控循环网络的居民出行模式识别 被引量:2
17
作者 丁咏梅 黄锐 《徐州工程学院学报(自然科学版)》 CAS 2020年第4期75-80,共6页
关注城市居民出行的特征及其交通方式选择行为,对于实现绿色交通具有重要的现实意义.该文基于GeoLife数据集,利用卷积神经网络(CNN)、门控循环单元(GRU)和混合模型(CNN-GRU)对居民的出行特征及规律进行研究.通过测试和对比分析表明:CNN-... 关注城市居民出行的特征及其交通方式选择行为,对于实现绿色交通具有重要的现实意义.该文基于GeoLife数据集,利用卷积神经网络(CNN)、门控循环单元(GRU)和混合模型(CNN-GRU)对居民的出行特征及规律进行研究.通过测试和对比分析表明:CNN-GRU模型具有较好的识别效果,且优于单独采用CNN和GRU分类方法的识别性能. 展开更多
关键词 出行模式识别 GPS轨迹数据 卷积神经网络 门控循环单元
下载PDF
基于深度门控循环单元神经网络的短期风功率预测模型 被引量:98
18
作者 牛哲文 余泽远 +1 位作者 李波 唐文虎 《电力自动化设备》 EI CSCD 北大核心 2018年第5期36-42,共7页
随着新能源的不断发展,大量大容量风电机组并入电网运行,给电网的安全可靠运行以及风力发电的可持续发展都提出了新的挑战。提出一种风功率预测模型,该模型以风电场风功率历史数据以及风速、风向等数值天气预报数据作为输入对风功率进... 随着新能源的不断发展,大量大容量风电机组并入电网运行,给电网的安全可靠运行以及风力发电的可持续发展都提出了新的挑战。提出一种风功率预测模型,该模型以风电场风功率历史数据以及风速、风向等数值天气预报数据作为输入对风功率进行预测。考虑到风功率预测中输入数据的波动性和不确定性,在传统门控循环单元(GRU)神经网络的基础上融合卷积神经网络(CNN),以提高模型对原始数据的特征提取和降维能力,并引入dropout技术减少模型中的过拟合现象。工程实例分析表明,所提模型在预测准确度和运算速度方面均优于长短记忆神经网络模型。 展开更多
关键词 风功率预测 深度神经网络 门控循环单元 卷积神经网络
下载PDF
基于通道注意力和门控循环单元的图像去雨算法 被引量:5
19
作者 张焱 张娟 方志军 《计算机应用研究》 CSCD 北大核心 2021年第8期2505-2509,共5页
在计算机视觉领域,雨线或者雨滴会使雨天拍摄的图像变得模糊,降低图像的质量。针对雨天图像质量低下的问题,提出了一种基于通道注意力和门控循环单元的图像去雨算法。该算法基本思路如下:首先将训练图像通过残差记忆模块提取特征;其次... 在计算机视觉领域,雨线或者雨滴会使雨天拍摄的图像变得模糊,降低图像的质量。针对雨天图像质量低下的问题,提出了一种基于通道注意力和门控循环单元的图像去雨算法。该算法基本思路如下:首先将训练图像通过残差记忆模块提取特征;其次将提取的特征通过特征增强模块增加感受野,识别不同等级的雨线特征并将其增强,传递给后续的循环网络;最后网络循环过程中,通过门控循环单元块实现不同循环阶段之间的参数共享。实验结果利用客观评价指标和主观视觉效果进行评估,验证了该算法在较为复杂数据集上的有效性。 展开更多
关键词 图像去雨 通道注意力 门控循环单元 循环神经网络 空洞卷积
下载PDF
基于门控循环单元的多因素感知短期游客人数预测模型 被引量:6
20
作者 王敬昌 陈岭 +2 位作者 余珊珊 蒋晨书 吴勇 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2019年第12期2357-2364,共8页
提出的预测模型采取分时序分段策略,使用卷积神经网络(CNN)提取景区多因素时序数据的特征,并对不同因素的时序数据赋予不同的权重,将结果送入门控循环单元(GRU)以挖掘其中的时序信息,结合预测时刻的情境信息(天气状况和节假日)预测短期... 提出的预测模型采取分时序分段策略,使用卷积神经网络(CNN)提取景区多因素时序数据的特征,并对不同因素的时序数据赋予不同的权重,将结果送入门控循环单元(GRU)以挖掘其中的时序信息,结合预测时刻的情境信息(天气状况和节假日)预测短期景区内游客人数.在某景区的闸机数据集和监控点车辆数据集上的实验结果表明:基于门控循环单元的多因素感知短期游客人数预测模型可以充分考虑多情境因素并对不同因素时序数据赋予不同的权重,均方根误差(RMSE)和平均绝对百分比误差(MAPE)均小于传统模型,能够有效降低短期游客人数预测误差。 展开更多
关键词 短期游客人数预测 多因素感知 门控循环单元(GRU) 卷积神经网络(CNN) 情境信息
下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部