Effective fault detection techniques can help flotation plant reduce reagents consumption,increase mineral recovery,and reduce labor intensity.Traditional,online fault detection methods during flotation processes have...Effective fault detection techniques can help flotation plant reduce reagents consumption,increase mineral recovery,and reduce labor intensity.Traditional,online fault detection methods during flotation processes have concentrated on extracting a specific froth feature for segmentation,like color,shape,size and texture,always leading to undesirable accuracy and efficiency since the same segmentation algorithm could not be applied to every case.In this work,a new integrated method based on convolution neural network(CNN)combined with transfer learning approach and support vector machine(SVM)is proposed to automatically recognize the flotation condition.To be more specific,CNN function as a trainable feature extractor to process the froth images and SVM is used as a recognizer to implement fault detection.As compared with the existed recognition methods,it turns out that the CNN-SVM model can automatically retrieve features from the raw froth images and perform fault detection with high accuracy.Hence,a CNN-SVM based,real-time flotation monitoring system is proposed for application in an antimony flotation plant in China.展开更多
The airport apron scene contains rich contextual information about the spatial position relationship.Traditional object detectors only considered visual appearance and ignored the contextual information.In addition,th...The airport apron scene contains rich contextual information about the spatial position relationship.Traditional object detectors only considered visual appearance and ignored the contextual information.In addition,the detection accuracy of some categories in the apron dataset was low.Therefore,an improved object detection method using spatial-aware features in apron scenes called SA-FRCNN is presented.The method uses graph convolutional networks to capture the relative spatial relationship between objects in the apron scene,incorporating this spatial context into feature learning.Moreover,an attention mechanism is introduced into the feature extraction process,with the goal to focus on the spatial position and key features,and distance-IoU loss is used to achieve a more accurate regression.The experimental results show that the mean average precision of the apron object detection based on SAFRCNN can reach 95.75%,and the detection effect of some hard-to-detect categories has been significantly improved.The proposed method effectively improves the detection accuracy on the apron dataset,which has a leading advantage over other methods.展开更多
Objective We developed a universal lesion detector(ULDor)which showed good performance in in-lab experiments.The study aims to evaluate the performance and its ability to generalize in clinical setting via both extern...Objective We developed a universal lesion detector(ULDor)which showed good performance in in-lab experiments.The study aims to evaluate the performance and its ability to generalize in clinical setting via both external and internal validation.Methods The ULDor system consists of a convolutional neural network(CNN)trained on around 80 K lesion annotations from about 12 K CT studies in the DeepLesion dataset and 5 other public organ-specific datasets.During the validation process,the test sets include two parts:the external validation dataset which was comprised of 164 sets of non-contrasted chest and upper abdomen CT scans from a comprehensive hospital,and the internal validation dataset which was comprised of 187 sets of low-dose helical CT scans from the National Lung Screening Trial(NLST).We ran the model on the two test sets to output lesion detection.Three board-certified radiologists read the CT scans and verified the detection results of ULDor.We used positive predictive value(PPV)and sensitivity to evaluate the performance of the model in detecting space-occupying lesions at all extra-pulmonary organs visualized on CT images,including liver,kidney,pancreas,adrenal,spleen,esophagus,thyroid,lymph nodes,body wall,thoracic spine,etc.Results In the external validation,the lesion-level PPV and sensitivity of the model were 57.9%and 67.0%,respectively.On average,the model detected 2.1 findings per set,and among them,0.9 were false positives.ULDor worked well for detecting liver lesions,with a PPV of 78.9%and a sensitivity of 92.7%,followed by kidney,with a PPV of 70.0%and a sensitivity of 58.3%.In internal validation with NLST test set,ULDor obtained a PPV of 75.3%and a sensitivity of 52.0%despite the relatively high noise level of soft tissue on images.Conclusions The performance tests of ULDor with the external real-world data have shown its high effectiveness in multiple-purposed detection for lesions in certain organs.With further optimisation and iterative upgrades,ULDor may be well suited for extensive application to external data.展开更多
In order to improve the detection accuracy of small objects,a neighborhood fusion-based hierarchical parallel feature pyramid network(NFPN)is proposed.Unlike the layer-by-layer structure adopted in the feature pyramid...In order to improve the detection accuracy of small objects,a neighborhood fusion-based hierarchical parallel feature pyramid network(NFPN)is proposed.Unlike the layer-by-layer structure adopted in the feature pyramid network(FPN)and deconvolutional single shot detector(DSSD),where the bottom layer of the feature pyramid network relies on the top layer,NFPN builds the feature pyramid network with no connections between the upper and lower layers.That is,it only fuses shallow features on similar scales.NFPN is highly portable and can be embedded in many models to further boost performance.Extensive experiments on PASCAL VOC 2007,2012,and COCO datasets demonstrate that the NFPN-based SSD without intricate tricks can exceed the DSSD model in terms of detection accuracy and inference speed,especially for small objects,e.g.,4%to 5%higher mAP(mean average precision)than SSD,and 2%to 3%higher mAP than DSSD.On VOC 2007 test set,the NFPN-based SSD with 300×300 input reaches 79.4%mAP at 34.6 frame/s,and the mAP can raise to 82.9%after using the multi-scale testing strategy.展开更多
To characterize the algebraic structure of wireless network coding, a hypergragh is utilized to model wireless packet networks from network layer. The algebraic description of random convolutional network coding is de...To characterize the algebraic structure of wireless network coding, a hypergragh is utilized to model wireless packet networks from network layer. The algebraic description of random convolutional network coding is deduced, and the coding condition is also presented. Analyses and simulations show that random convolutional coding is capacity-achieving with probability approaching 1.展开更多
基金Projects(61621062,61563015)supported by the National Natural Science Foundation of ChinaProject(2016zzts056)supported by the Central South University Graduate Independent Exploration Innovation Program,China
文摘Effective fault detection techniques can help flotation plant reduce reagents consumption,increase mineral recovery,and reduce labor intensity.Traditional,online fault detection methods during flotation processes have concentrated on extracting a specific froth feature for segmentation,like color,shape,size and texture,always leading to undesirable accuracy and efficiency since the same segmentation algorithm could not be applied to every case.In this work,a new integrated method based on convolution neural network(CNN)combined with transfer learning approach and support vector machine(SVM)is proposed to automatically recognize the flotation condition.To be more specific,CNN function as a trainable feature extractor to process the froth images and SVM is used as a recognizer to implement fault detection.As compared with the existed recognition methods,it turns out that the CNN-SVM model can automatically retrieve features from the raw froth images and perform fault detection with high accuracy.Hence,a CNN-SVM based,real-time flotation monitoring system is proposed for application in an antimony flotation plant in China.
基金supported by the Fundamental Research Funds for Central Universities of the Civil Aviation University of China(No.3122021088).
文摘The airport apron scene contains rich contextual information about the spatial position relationship.Traditional object detectors only considered visual appearance and ignored the contextual information.In addition,the detection accuracy of some categories in the apron dataset was low.Therefore,an improved object detection method using spatial-aware features in apron scenes called SA-FRCNN is presented.The method uses graph convolutional networks to capture the relative spatial relationship between objects in the apron scene,incorporating this spatial context into feature learning.Moreover,an attention mechanism is introduced into the feature extraction process,with the goal to focus on the spatial position and key features,and distance-IoU loss is used to achieve a more accurate regression.The experimental results show that the mean average precision of the apron object detection based on SAFRCNN can reach 95.75%,and the detection effect of some hard-to-detect categories has been significantly improved.The proposed method effectively improves the detection accuracy on the apron dataset,which has a leading advantage over other methods.
文摘Objective We developed a universal lesion detector(ULDor)which showed good performance in in-lab experiments.The study aims to evaluate the performance and its ability to generalize in clinical setting via both external and internal validation.Methods The ULDor system consists of a convolutional neural network(CNN)trained on around 80 K lesion annotations from about 12 K CT studies in the DeepLesion dataset and 5 other public organ-specific datasets.During the validation process,the test sets include two parts:the external validation dataset which was comprised of 164 sets of non-contrasted chest and upper abdomen CT scans from a comprehensive hospital,and the internal validation dataset which was comprised of 187 sets of low-dose helical CT scans from the National Lung Screening Trial(NLST).We ran the model on the two test sets to output lesion detection.Three board-certified radiologists read the CT scans and verified the detection results of ULDor.We used positive predictive value(PPV)and sensitivity to evaluate the performance of the model in detecting space-occupying lesions at all extra-pulmonary organs visualized on CT images,including liver,kidney,pancreas,adrenal,spleen,esophagus,thyroid,lymph nodes,body wall,thoracic spine,etc.Results In the external validation,the lesion-level PPV and sensitivity of the model were 57.9%and 67.0%,respectively.On average,the model detected 2.1 findings per set,and among them,0.9 were false positives.ULDor worked well for detecting liver lesions,with a PPV of 78.9%and a sensitivity of 92.7%,followed by kidney,with a PPV of 70.0%and a sensitivity of 58.3%.In internal validation with NLST test set,ULDor obtained a PPV of 75.3%and a sensitivity of 52.0%despite the relatively high noise level of soft tissue on images.Conclusions The performance tests of ULDor with the external real-world data have shown its high effectiveness in multiple-purposed detection for lesions in certain organs.With further optimisation and iterative upgrades,ULDor may be well suited for extensive application to external data.
基金The National Natural Science Foundation of China(No.61603091)。
文摘In order to improve the detection accuracy of small objects,a neighborhood fusion-based hierarchical parallel feature pyramid network(NFPN)is proposed.Unlike the layer-by-layer structure adopted in the feature pyramid network(FPN)and deconvolutional single shot detector(DSSD),where the bottom layer of the feature pyramid network relies on the top layer,NFPN builds the feature pyramid network with no connections between the upper and lower layers.That is,it only fuses shallow features on similar scales.NFPN is highly portable and can be embedded in many models to further boost performance.Extensive experiments on PASCAL VOC 2007,2012,and COCO datasets demonstrate that the NFPN-based SSD without intricate tricks can exceed the DSSD model in terms of detection accuracy and inference speed,especially for small objects,e.g.,4%to 5%higher mAP(mean average precision)than SSD,and 2%to 3%higher mAP than DSSD.On VOC 2007 test set,the NFPN-based SSD with 300×300 input reaches 79.4%mAP at 34.6 frame/s,and the mAP can raise to 82.9%after using the multi-scale testing strategy.
基金Supported by National Natural Science Foundation of China (No.61271174)Young Teachers' Innovation Foundation of Xidian University(K5051303137)
文摘To characterize the algebraic structure of wireless network coding, a hypergragh is utilized to model wireless packet networks from network layer. The algebraic description of random convolutional network coding is deduced, and the coding condition is also presented. Analyses and simulations show that random convolutional coding is capacity-achieving with probability approaching 1.