期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
矿用钢丝网编织设备
1
《煤炭工程》 1981年第7期18-,共1页
<正>我们在阜新、开滦所用编网设备的基础上,设计了一种矿用钢丝网编织设备.它由梭芯缠线装置、线盘组、编网机、剪网机及卷网机组成.其技术特征:编网能力每小时102.5米~2;网幅宽1.1米;经线和纬线间距皆为33毫米;钢丝直径3.5毫米;
关键词 网机 矿用钢 钢丝直径 卷网机 线盘 样机试制 煤矿机械
下载PDF
Fault detection in flotation processes based on deep learning and support vector machine 被引量:16
2
作者 LI Zhong-mei GUI Wei-hua ZHU Jian-yong 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2504-2515,共12页
Effective fault detection techniques can help flotation plant reduce reagents consumption,increase mineral recovery,and reduce labor intensity.Traditional,online fault detection methods during flotation processes have... Effective fault detection techniques can help flotation plant reduce reagents consumption,increase mineral recovery,and reduce labor intensity.Traditional,online fault detection methods during flotation processes have concentrated on extracting a specific froth feature for segmentation,like color,shape,size and texture,always leading to undesirable accuracy and efficiency since the same segmentation algorithm could not be applied to every case.In this work,a new integrated method based on convolution neural network(CNN)combined with transfer learning approach and support vector machine(SVM)is proposed to automatically recognize the flotation condition.To be more specific,CNN function as a trainable feature extractor to process the froth images and SVM is used as a recognizer to implement fault detection.As compared with the existed recognition methods,it turns out that the CNN-SVM model can automatically retrieve features from the raw froth images and perform fault detection with high accuracy.Hence,a CNN-SVM based,real-time flotation monitoring system is proposed for application in an antimony flotation plant in China. 展开更多
关键词 flotation processes convolutional neural network support vector machine froth images fault detection
下载PDF
SA-FRCNN:An Improved Object Detection Method for Airport Apron Scenes 被引量:2
3
作者 LYU Zonglei CHEN Liyun 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第4期571-586,共16页
The airport apron scene contains rich contextual information about the spatial position relationship.Traditional object detectors only considered visual appearance and ignored the contextual information.In addition,th... The airport apron scene contains rich contextual information about the spatial position relationship.Traditional object detectors only considered visual appearance and ignored the contextual information.In addition,the detection accuracy of some categories in the apron dataset was low.Therefore,an improved object detection method using spatial-aware features in apron scenes called SA-FRCNN is presented.The method uses graph convolutional networks to capture the relative spatial relationship between objects in the apron scene,incorporating this spatial context into feature learning.Moreover,an attention mechanism is introduced into the feature extraction process,with the goal to focus on the spatial position and key features,and distance-IoU loss is used to achieve a more accurate regression.The experimental results show that the mean average precision of the apron object detection based on SAFRCNN can reach 95.75%,and the detection effect of some hard-to-detect categories has been significantly improved.The proposed method effectively improves the detection accuracy on the apron dataset,which has a leading advantage over other methods. 展开更多
关键词 airport apron scene object detection graph convolutional network spatial context attention mechanism
下载PDF
External and Internal Validation of a Computer Assisted Diagnostic Model for Detecting Multi-Organ Mass Lesions in CT images 被引量:1
4
作者 Lianyan Xu Ke Yan +4 位作者 Le Lu Weihong Zhang Xu Chen Xiaofei Huo Jingjing Lu 《Chinese Medical Sciences Journal》 CAS CSCD 2021年第3期210-217,共8页
Objective We developed a universal lesion detector(ULDor)which showed good performance in in-lab experiments.The study aims to evaluate the performance and its ability to generalize in clinical setting via both extern... Objective We developed a universal lesion detector(ULDor)which showed good performance in in-lab experiments.The study aims to evaluate the performance and its ability to generalize in clinical setting via both external and internal validation.Methods The ULDor system consists of a convolutional neural network(CNN)trained on around 80 K lesion annotations from about 12 K CT studies in the DeepLesion dataset and 5 other public organ-specific datasets.During the validation process,the test sets include two parts:the external validation dataset which was comprised of 164 sets of non-contrasted chest and upper abdomen CT scans from a comprehensive hospital,and the internal validation dataset which was comprised of 187 sets of low-dose helical CT scans from the National Lung Screening Trial(NLST).We ran the model on the two test sets to output lesion detection.Three board-certified radiologists read the CT scans and verified the detection results of ULDor.We used positive predictive value(PPV)and sensitivity to evaluate the performance of the model in detecting space-occupying lesions at all extra-pulmonary organs visualized on CT images,including liver,kidney,pancreas,adrenal,spleen,esophagus,thyroid,lymph nodes,body wall,thoracic spine,etc.Results In the external validation,the lesion-level PPV and sensitivity of the model were 57.9%and 67.0%,respectively.On average,the model detected 2.1 findings per set,and among them,0.9 were false positives.ULDor worked well for detecting liver lesions,with a PPV of 78.9%and a sensitivity of 92.7%,followed by kidney,with a PPV of 70.0%and a sensitivity of 58.3%.In internal validation with NLST test set,ULDor obtained a PPV of 75.3%and a sensitivity of 52.0%despite the relatively high noise level of soft tissue on images.Conclusions The performance tests of ULDor with the external real-world data have shown its high effectiveness in multiple-purposed detection for lesions in certain organs.With further optimisation and iterative upgrades,ULDor may be well suited for extensive application to external data. 展开更多
关键词 lesion detection computer-aided diagnosis convolutional neural network deep learning
下载PDF
Neighborhood fusion-based hierarchical parallel feature pyramid network for object detection 被引量:3
5
作者 Mo Lingfei Hu Shuming 《Journal of Southeast University(English Edition)》 EI CAS 2020年第3期252-263,共12页
In order to improve the detection accuracy of small objects,a neighborhood fusion-based hierarchical parallel feature pyramid network(NFPN)is proposed.Unlike the layer-by-layer structure adopted in the feature pyramid... In order to improve the detection accuracy of small objects,a neighborhood fusion-based hierarchical parallel feature pyramid network(NFPN)is proposed.Unlike the layer-by-layer structure adopted in the feature pyramid network(FPN)and deconvolutional single shot detector(DSSD),where the bottom layer of the feature pyramid network relies on the top layer,NFPN builds the feature pyramid network with no connections between the upper and lower layers.That is,it only fuses shallow features on similar scales.NFPN is highly portable and can be embedded in many models to further boost performance.Extensive experiments on PASCAL VOC 2007,2012,and COCO datasets demonstrate that the NFPN-based SSD without intricate tricks can exceed the DSSD model in terms of detection accuracy and inference speed,especially for small objects,e.g.,4%to 5%higher mAP(mean average precision)than SSD,and 2%to 3%higher mAP than DSSD.On VOC 2007 test set,the NFPN-based SSD with 300×300 input reaches 79.4%mAP at 34.6 frame/s,and the mAP can raise to 82.9%after using the multi-scale testing strategy. 展开更多
关键词 computer vision deep convolutional neural network object detection hierarchical parallel feature pyramid network multi-scale feature fusion
下载PDF
Algebraic Approach to Random Convolutional Network Coding over Wireless Packet Networks
6
作者 郭网媚 刘斌越 蒋馥蔚 《Transactions of Tianjin University》 EI CAS 2013年第4期307-312,共6页
To characterize the algebraic structure of wireless network coding, a hypergragh is utilized to model wireless packet networks from network layer. The algebraic description of random convolutional network coding is de... To characterize the algebraic structure of wireless network coding, a hypergragh is utilized to model wireless packet networks from network layer. The algebraic description of random convolutional network coding is deduced, and the coding condition is also presented. Analyses and simulations show that random convolutional coding is capacity-achieving with probability approaching 1. 展开更多
关键词 wireless network coding random convolutional network coding HYPERGRAPH capacity-achieving
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部