Taking the test stopes during continuous mining induced roof caving of Tongkeng ore-body No.92 as example, the calculation flow of unloading analysis was established. According to the unloading region division method ...Taking the test stopes during continuous mining induced roof caving of Tongkeng ore-body No.92 as example, the calculation flow of unloading analysis was established. According to the unloading region division method of the affected zone theory, and the deterioration laws of mechanics parameters of unloading rock mass, the continuous mining process in underground mine was analyzed by the software MIDAS/GTS, the mechanical response of roof rock mass unloading was studied, and the differences were analyzed with the conventional simulation. The result shows that the maximum tensile stress, subsidence displacement and equivalent plastic strain of roof rock mass are 1.5 MPa, 20 cm and 1.5% in the unloading analysis, while 1.0 MPa, 13 cm and 0.9% in the conventional analysis. The values of unloading analysis, which are also closer to the actual situation, are greater than those of conventional analysis; the maximum step in continuous mining is 48 m, which shows that the induced treatment of the roof should be carried out after 2 mining steps展开更多
Slabbing failure often occurs in the surround rock near a deep underground excavation. The mechanism of slabbing failure is still unclear. In order to reveal the influence of the intermediate principal stress (σ2) ...Slabbing failure often occurs in the surround rock near a deep underground excavation. The mechanism of slabbing failure is still unclear. In order to reveal the influence of the intermediate principal stress (σ2) on slabbing failure, true triaxial unloading compressive test was carried out based on the stress path of the underground engineering excavation, i.e., unloading the minimum principal stress (σ3), keeping σ2, increasing the maximum principal stress (σ1). The initiation and the propagation of slabbing fracture in rock specimens were identified by examining the acoustic emission (AE) and the infrared radiation characterization. The test results show that the failure modes of the granite and red sandstone specimens are changed from shear to slabbing with the increase of σ2. The AE characteristic of rock specimen under low σ2 is swarm type which is the main shock type under high σ2. The infrared radiation properties of rock specimen under different σ2 are also different. The temperature change area is just along the shear fracture such as the uniaxial compression. With the increase of σ2, the temperature change area is planar of rock specimen which proofs that the failure mode of rock specimen turns into slabbing.展开更多
Based on the stress redistribution analysis of rock mass during the deep underground excavation, the unloading process of pre-flawed rock material was simulated by distinct element method (DEM). The effects of unloadi...Based on the stress redistribution analysis of rock mass during the deep underground excavation, the unloading process of pre-flawed rock material was simulated by distinct element method (DEM). The effects of unloading rate and flaw inclination angle on unloading strengths and cracking properties of pre-flawed rock specimens are numerically revealed. The results indicate that the unloading failure strength of pre-flawed specimen exhibits a power-function increase trend with the increase of unloading period. Moreover, combined with the stress state analysis on the flaws, it is found that the unloading failure strength increases with the increase of flaw inclination angle. The cracking distribution of pre-flawed specimens under the unloading condition closely depends on the flaw inclination angle, and three typical types of flaw coalescence are observed. Furthermore, at a faster unloading rate, the pre-flawed specimen experiences a sharper and quicker unloading failure process, resulting in more splitting cracks in the specimens.展开更多
Deformation behavior and hydraulic properties of rock are the two main factors that influence safety of excavation and use of rock engineering due to in situ stress release.The primary objective of this study is to ex...Deformation behavior and hydraulic properties of rock are the two main factors that influence safety of excavation and use of rock engineering due to in situ stress release.The primary objective of this study is to explore deformation characteristics and permeability properties and provide some parameters to character the rock under unloading conditions.A series of triaxial tests with permeability and acoustic emission signal measurement were conducted under the path of confining pressure unloading prior to the peak stress.Deformation behavior and permeability evolution in the whole stress–strain process based on these experimental results were analyzed in detail.Results demonstrate that,under the confining pressure unloading conditions,a good correspondence relationship among the stress–axial strain curve,permeability–axial strain curve and acoustic emission activity pattern was obtained.After the confining pressure was unloaded,the radial strain grew much faster than the axial strain,which induced the volumetric strain growing rapidly.All failures under confining pressure unloading conditions featured brittle shear failure with a single macro shear rupture surface.With the decrease in deformation modulus during the confining pressure unloading process,the damage variable gradually increases,indicating that confining pressure unloading was a process of damage accumulation and strength degradation.From the entire loading and unloading process,there was a certain positive correlation between the permeability and volumetric strain.展开更多
Numerical simulations and field tests were used to investigate the changes in ground stress and deformation of, and gas flow from, a protected coal seam under which an extra-thin coal seam was drilled. The geological ...Numerical simulations and field tests were used to investigate the changes in ground stress and deformation of, and gas flow from, a protected coal seam under which an extra-thin coal seam was drilled. The geological conditions were: 0.5 meter mining height, 18.5 meter coal seam spacing and a hard limestone/fine sandstone inter-stratum. For these conditions we conclude: 1) the overlying coal-rock mass bends and sinks without the appearance of a caving zone, and 2) the protected coal seam is in the bending zone and undergoes expansion deformation in the stress-relaxed area. The deformation was 12 mm and the relative defor- mation was 0.15%. As mining proceeds, deformation in the protected layer begins as compression, then becomes a rapid expansion and, finally, reaches a stable value. A large number of bed separation crannies are created in the stress-relaxed area and the permeability coefficient of the coal seam was increased 403 fold. Grid penetration boreholes were evenly drilled toward the protected coal seam to affect pressure relief and gas drainage. This made the gas pressure decrease from 0.75 to 0.15 MPa, the gas content decrease from 13 to 4.66 m3/t and the gas drainage reach 64%.展开更多
基金Projects (50934006, 51074178) supported by the National Natural Science Foundation of ChinaProject (2010QZZD001) supported by the Fundamental Research Funds for the Central Universities of China
文摘Taking the test stopes during continuous mining induced roof caving of Tongkeng ore-body No.92 as example, the calculation flow of unloading analysis was established. According to the unloading region division method of the affected zone theory, and the deterioration laws of mechanics parameters of unloading rock mass, the continuous mining process in underground mine was analyzed by the software MIDAS/GTS, the mechanical response of roof rock mass unloading was studied, and the differences were analyzed with the conventional simulation. The result shows that the maximum tensile stress, subsidence displacement and equivalent plastic strain of roof rock mass are 1.5 MPa, 20 cm and 1.5% in the unloading analysis, while 1.0 MPa, 13 cm and 0.9% in the conventional analysis. The values of unloading analysis, which are also closer to the actual situation, are greater than those of conventional analysis; the maximum step in continuous mining is 48 m, which shows that the induced treatment of the roof should be carried out after 2 mining steps
基金Project(2010CB732004)supported by the National Basic Research Program of ChinaProjects(50934006,11102239)supported by the National Natural Science Foundation of China
文摘Slabbing failure often occurs in the surround rock near a deep underground excavation. The mechanism of slabbing failure is still unclear. In order to reveal the influence of the intermediate principal stress (σ2) on slabbing failure, true triaxial unloading compressive test was carried out based on the stress path of the underground engineering excavation, i.e., unloading the minimum principal stress (σ3), keeping σ2, increasing the maximum principal stress (σ1). The initiation and the propagation of slabbing fracture in rock specimens were identified by examining the acoustic emission (AE) and the infrared radiation characterization. The test results show that the failure modes of the granite and red sandstone specimens are changed from shear to slabbing with the increase of σ2. The AE characteristic of rock specimen under low σ2 is swarm type which is the main shock type under high σ2. The infrared radiation properties of rock specimen under different σ2 are also different. The temperature change area is just along the shear fracture such as the uniaxial compression. With the increase of σ2, the temperature change area is planar of rock specimen which proofs that the failure mode of rock specimen turns into slabbing.
基金Projects(41630642,11472311)supported by the National Natural Science Foundation of ChinaProject(2017zzts181)supported by the Cultivating Excellent Ph Ds of Central South University,ChinaProject(201806370062)supported by the China Scholarship Council
文摘Based on the stress redistribution analysis of rock mass during the deep underground excavation, the unloading process of pre-flawed rock material was simulated by distinct element method (DEM). The effects of unloading rate and flaw inclination angle on unloading strengths and cracking properties of pre-flawed rock specimens are numerically revealed. The results indicate that the unloading failure strength of pre-flawed specimen exhibits a power-function increase trend with the increase of unloading period. Moreover, combined with the stress state analysis on the flaws, it is found that the unloading failure strength increases with the increase of flaw inclination angle. The cracking distribution of pre-flawed specimens under the unloading condition closely depends on the flaw inclination angle, and three typical types of flaw coalescence are observed. Furthermore, at a faster unloading rate, the pre-flawed specimen experiences a sharper and quicker unloading failure process, resulting in more splitting cracks in the specimens.
基金Project(2014CB047100)supported by the National Basic Research Program of China(973 Program)Projects(51679093/E090705,51774147/E0409)supported by the National Natural Science Foundation of ChinaProject(2017J01094)supported by the Natural Science Foundation of Fujian Province,China
文摘Deformation behavior and hydraulic properties of rock are the two main factors that influence safety of excavation and use of rock engineering due to in situ stress release.The primary objective of this study is to explore deformation characteristics and permeability properties and provide some parameters to character the rock under unloading conditions.A series of triaxial tests with permeability and acoustic emission signal measurement were conducted under the path of confining pressure unloading prior to the peak stress.Deformation behavior and permeability evolution in the whole stress–strain process based on these experimental results were analyzed in detail.Results demonstrate that,under the confining pressure unloading conditions,a good correspondence relationship among the stress–axial strain curve,permeability–axial strain curve and acoustic emission activity pattern was obtained.After the confining pressure was unloaded,the radial strain grew much faster than the axial strain,which induced the volumetric strain growing rapidly.All failures under confining pressure unloading conditions featured brittle shear failure with a single macro shear rupture surface.With the decrease in deformation modulus during the confining pressure unloading process,the damage variable gradually increases,indicating that confining pressure unloading was a process of damage accumulation and strength degradation.From the entire loading and unloading process,there was a certain positive correlation between the permeability and volumetric strain.
基金Projects 2005CB221503 supported by the National Basic Research Program of China70533050 and 50674089 by the National Natural Science Foundation of China2005BA813B-3-06 by the National Tenth Five-Year Key Scientific and Technological Project
文摘Numerical simulations and field tests were used to investigate the changes in ground stress and deformation of, and gas flow from, a protected coal seam under which an extra-thin coal seam was drilled. The geological conditions were: 0.5 meter mining height, 18.5 meter coal seam spacing and a hard limestone/fine sandstone inter-stratum. For these conditions we conclude: 1) the overlying coal-rock mass bends and sinks without the appearance of a caving zone, and 2) the protected coal seam is in the bending zone and undergoes expansion deformation in the stress-relaxed area. The deformation was 12 mm and the relative defor- mation was 0.15%. As mining proceeds, deformation in the protected layer begins as compression, then becomes a rapid expansion and, finally, reaches a stable value. A large number of bed separation crannies are created in the stress-relaxed area and the permeability coefficient of the coal seam was increased 403 fold. Grid penetration boreholes were evenly drilled toward the protected coal seam to affect pressure relief and gas drainage. This made the gas pressure decrease from 0.75 to 0.15 MPa, the gas content decrease from 13 to 4.66 m3/t and the gas drainage reach 64%.