期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于层状岩体卸荷演化的锦屏Ⅰ级地下厂房洞室群稳定性与调控 被引量:29
1
作者 黄书岭 王继敏 +4 位作者 丁秀丽 邬爱清 段绍辉 卢波 胡志刚 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2011年第11期2203-2216,共14页
锦屏I级水电站地下厂房洞室群开挖支护设计与施工控制以及整体稳定性等问题十分突出,施工期已经明显呈现出高应力、低强度应力比条件下围岩的卸荷变形与破坏特征。根据锦屏I级地下厂房层状岩体力学特性,采用考虑卸荷演化的层状岩体本构... 锦屏I级水电站地下厂房洞室群开挖支护设计与施工控制以及整体稳定性等问题十分突出,施工期已经明显呈现出高应力、低强度应力比条件下围岩的卸荷变形与破坏特征。根据锦屏I级地下厂房层状岩体力学特性,采用考虑卸荷演化的层状岩体本构模型及其数值模拟方法,反演获得初始地应力场以及层状岩体力学参数。在此基础上,对锦屏Ⅰ级地下厂房洞室群进行三维数值模拟分析,获得一些对高应力下锦屏Ⅰ级水电站大型地下洞室群施工期围岩稳定与支护安全等方面的认识,提出洞室群围岩应力释放调控、松弛区承载力调控以及变形开裂调控等适时工程调控措施与建议。研究结果表明,洞室群整体开挖完成后的现场监测结果和围岩稳定现状等证实了所提出的认识和调控措施的合理性,表明层状岩体本构模型及其数值模拟分析方法能够较好地反映高应力下层状岩体中大型地下洞室群施工期的工作性状。 展开更多
关键词 岩石力学 锦屏Ⅰ级水电站 地下洞室群 高地应力 低强度应力比 层状岩体本构模型 卸荷演化 工程调控
下载PDF
Experimental investigation on deformation characteristics and permeability evolution of rock under confining pressure unloading conditions 被引量:10
2
作者 CHEN Xu TANG Chun-an +2 位作者 YU Jin ZHOU Jian-feng CAI Yan-yan 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第8期1987-2001,共15页
Deformation behavior and hydraulic properties of rock are the two main factors that influence safety of excavation and use of rock engineering due to in situ stress release.The primary objective of this study is to ex... Deformation behavior and hydraulic properties of rock are the two main factors that influence safety of excavation and use of rock engineering due to in situ stress release.The primary objective of this study is to explore deformation characteristics and permeability properties and provide some parameters to character the rock under unloading conditions.A series of triaxial tests with permeability and acoustic emission signal measurement were conducted under the path of confining pressure unloading prior to the peak stress.Deformation behavior and permeability evolution in the whole stress–strain process based on these experimental results were analyzed in detail.Results demonstrate that,under the confining pressure unloading conditions,a good correspondence relationship among the stress–axial strain curve,permeability–axial strain curve and acoustic emission activity pattern was obtained.After the confining pressure was unloaded,the radial strain grew much faster than the axial strain,which induced the volumetric strain growing rapidly.All failures under confining pressure unloading conditions featured brittle shear failure with a single macro shear rupture surface.With the decrease in deformation modulus during the confining pressure unloading process,the damage variable gradually increases,indicating that confining pressure unloading was a process of damage accumulation and strength degradation.From the entire loading and unloading process,there was a certain positive correlation between the permeability and volumetric strain. 展开更多
关键词 unloading rock mechanics permeability evolution triaxial experiment acoustic emission SANDSTONE
下载PDF
Tunnel failure in hard rock with multiple weak planes due to excavation unloading of in-situ stress 被引量:12
3
作者 CHEN Shao-jie FENG Fan +4 位作者 WANG Ya-jun LI Di-yuan HUANG Wan-peng ZHAO Xing-dong JIANG Ning 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第10期2864-2882,共19页
Natural geological structures in rock(e.g.,joints,weakness planes,defects)play a vital role in the stability of tunnels and underground operations during construction.We investigated the failure characteristics of a d... Natural geological structures in rock(e.g.,joints,weakness planes,defects)play a vital role in the stability of tunnels and underground operations during construction.We investigated the failure characteristics of a deep circular tunnel in a rock mass with multiple weakness planes using a 2D combined finite element method/discrete element method(FEM/DEM).Conventional triaxial compression tests were performed on typical hard rock(marble)specimens under a range of confinement stress conditions to validate the rationale and accuracy of the proposed numerical approach.Parametric analysis was subsequently conducted to investigate the influence of inclination angle,and length on the crack propagation behavior,failure mode,energy evolution,and displacement distribution of the surrounding rock.The results show that the inclination angle strongly affects tunnel stability,and the failure intensity and damage range increase with increasing inclination angle and then decrease.The dynamic disasters are more likely with increasing weak plane length.Shearing and sliding along multiple weak planes are also consistently accompanied by kinetic energy fluctuations and surges after unloading,which implies a potentially violent dynamic response around a deeply-buried tunnel.Interactions between slabbing and shearing near the excavation boundaries are also discussed.The results presented here provide important insight into deep tunnel failure in hard rock influenced by both unloading disturbance and tectonic activation. 展开更多
关键词 rock tunnel weak planes excavation unloading crack propagation energy evolution finite element method/discrete element method(FEM/DEM)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部