To study the energy storage and dissipation characteristics of deep rock under two-dimensional compression with constant confining pressure,the single cyclic loading-unloading two-dimensional compression tests were pe...To study the energy storage and dissipation characteristics of deep rock under two-dimensional compression with constant confining pressure,the single cyclic loading-unloading two-dimensional compression tests were performed on granite specimens with two height-to-width(H/W)ratios under five confining pressures.Three energy density parameters(input energy density,elastic energy density and dissipated energy density)in the axial and lateral directions of granite specimens under different confining pressures were calculated using the area integral method.The experimental results show that,for the specimens with a specific H/W ratio,these three energy density parameters in the axial and lateral directions increase nonlinearly with the confining pressure as quadratic polynomial functions.Under constant confining pressure compression,the linear energy storage law of granite specimens in the axial and lateral directions was founded.Using the linear energy storage law in different directions,the elastic energy density in various directions(axial elastic energy density,lateral elastic energy density and total elastic energy density)of granite under any specific confining pressures can be calculated.When the H/W ratio varies from 1:1 to 2:1,the lateral compression energy storage coefficient increases and the corresponding axial compression energy storage coefficient decreases,while the total compression energy storage coefficient is almost independent of the H/W ratio.展开更多
In the process of deep projects excavation,deep rock often experiences a full stress process from high stress to unloading and then to impact disturbance failure.To study the dynamic characteristics of three-dimension...In the process of deep projects excavation,deep rock often experiences a full stress process from high stress to unloading and then to impact disturbance failure.To study the dynamic characteristics of three-dimensional high stressed red sandstone subjected to unloading and impact loads,impact compression tests were conducted on red sandstone under confining pressure unloading conditions using a modified split Hopkinson pressure bar.Impact disturbance tests of uniaxial pre-stressed rock were also conducted(without considering confining pressure unloading effect).The results demonstrate that the impact compression strength of red sandstone shows an obvious strain rate effect.With an approximately equal strain rate,the dynamic strength of red sandstone under confining unloading conditions is less than that in the uniaxial pre-stressed impact compression test.Confining pressure unloading produces a strength-weakening effect,and the dynamic strength weakening factor(DSWF)is also defined.The results also indicate that the strain rate of the rock and the incident energy change in a logarithmic relation.With similar incident energies,unloading results in a higher strain rate in pre-stressed rock.According to the experimental analysis,unloading does not affect the failure mode,but reduces the dynamic strength of pre-stressed rock.The influence of confining pressure unloading on the shear strength parameters(cohesion and friction angle)is discussed.Under the same external energy impact compression,prestressed rock subjected to unloading is more likely to be destroyed.Thus,the effect of unloading on the rock mechanical characteristics should be considered in deep rock project excavation design.展开更多
In order to understand the effect of mining height and floor lithology at the upper protective layer face on the pressure relief of protected coal seams, this paper uses a numerical simulation method to model the pres...In order to understand the effect of mining height and floor lithology at the upper protective layer face on the pressure relief of protected coal seams, this paper uses a numerical simulation method to model the pressure changes at protected coal seam during mining upper protective layer. The results show that the taller the mining height at the upper protective layer face, the greater the protection on protected coal seam due to the higher level of pressure release; the upper protective layer face with hard rock floor impedes the pressure release at the protected coal seam, which affects the overall effect of the pressure release at protected coal seam using the protective layer mining method.展开更多
基金Projects(41877272,51974359)supported by the National Natural Science Foundation of China。
文摘To study the energy storage and dissipation characteristics of deep rock under two-dimensional compression with constant confining pressure,the single cyclic loading-unloading two-dimensional compression tests were performed on granite specimens with two height-to-width(H/W)ratios under five confining pressures.Three energy density parameters(input energy density,elastic energy density and dissipated energy density)in the axial and lateral directions of granite specimens under different confining pressures were calculated using the area integral method.The experimental results show that,for the specimens with a specific H/W ratio,these three energy density parameters in the axial and lateral directions increase nonlinearly with the confining pressure as quadratic polynomial functions.Under constant confining pressure compression,the linear energy storage law of granite specimens in the axial and lateral directions was founded.Using the linear energy storage law in different directions,the elastic energy density in various directions(axial elastic energy density,lateral elastic energy density and total elastic energy density)of granite under any specific confining pressures can be calculated.When the H/W ratio varies from 1:1 to 2:1,the lateral compression energy storage coefficient increases and the corresponding axial compression energy storage coefficient decreases,while the total compression energy storage coefficient is almost independent of the H/W ratio.
基金Projects(42077244,41877272)supported by the National Natural Science Foundation of ChinaProject(2020-05)supported by the Open Research Fund of Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization,China。
文摘In the process of deep projects excavation,deep rock often experiences a full stress process from high stress to unloading and then to impact disturbance failure.To study the dynamic characteristics of three-dimensional high stressed red sandstone subjected to unloading and impact loads,impact compression tests were conducted on red sandstone under confining pressure unloading conditions using a modified split Hopkinson pressure bar.Impact disturbance tests of uniaxial pre-stressed rock were also conducted(without considering confining pressure unloading effect).The results demonstrate that the impact compression strength of red sandstone shows an obvious strain rate effect.With an approximately equal strain rate,the dynamic strength of red sandstone under confining unloading conditions is less than that in the uniaxial pre-stressed impact compression test.Confining pressure unloading produces a strength-weakening effect,and the dynamic strength weakening factor(DSWF)is also defined.The results also indicate that the strain rate of the rock and the incident energy change in a logarithmic relation.With similar incident energies,unloading results in a higher strain rate in pre-stressed rock.According to the experimental analysis,unloading does not affect the failure mode,but reduces the dynamic strength of pre-stressed rock.The influence of confining pressure unloading on the shear strength parameters(cohesion and friction angle)is discussed.Under the same external energy impact compression,prestressed rock subjected to unloading is more likely to be destroyed.Thus,the effect of unloading on the rock mechanical characteristics should be considered in deep rock project excavation design.
文摘In order to understand the effect of mining height and floor lithology at the upper protective layer face on the pressure relief of protected coal seams, this paper uses a numerical simulation method to model the pressure changes at protected coal seam during mining upper protective layer. The results show that the taller the mining height at the upper protective layer face, the greater the protection on protected coal seam due to the higher level of pressure release; the upper protective layer face with hard rock floor impedes the pressure release at the protected coal seam, which affects the overall effect of the pressure release at protected coal seam using the protective layer mining method.