The present study analyzed the electromagnetic radiation(EMR) time series of the destruction process of coal or rock sample under uniaxial loading and the monitoring process in working face by means of fractal geometr...The present study analyzed the electromagnetic radiation(EMR) time series of the destruction process of coal or rock sample under uniaxial loading and the monitoring process in working face by means of fractal geometry,and results of the correlation dimension change curve of EMR time series were obtained.In the meantime,the current study also sought the fractal characteristic to the EMR signals by contrast to the change curve of EMR signals and explored the precursory phenomenon of rock burst.This paper concluded the main findings as followed:the EMR time series of the destruction process of coal or rock sample under uniaxial loading and the monitoring process in working face corresponded to fractal;the correlation dimension of EMR time series reflected the process of coal or rock damage deformation,that is,the inner damage of coal or rock made a change from random to order.In the field application,the correlation dimension served as a new index of forecasting the coal or rock dynamic disaster.展开更多
Based on the comparison between several model outputs from CMIP5 (Coupled Model Intercomparison Project Phase-5) and the satellite rainfall mapping data of GSMaP (global satellite mapping of precipitation), This p...Based on the comparison between several model outputs from CMIP5 (Coupled Model Intercomparison Project Phase-5) and the satellite rainfall mapping data of GSMaP (global satellite mapping of precipitation), This paper selected MIROC4h as a future projection of rainfall in the Sittaung River basin, Myanmar, with the fine spatial resolution of 0.5°. At first, MIROC4h projection towards 2035 was corrected by using the error trend (GSMaP-MIROC4h) for nine years over-rapping of both outputs from 2006 to 2014. Assuming the seasonal autoregressive processes, future error trend at each grid point was estimated by the time series forecast of SARMAP processes using the nine years training data. Then future projection correction was done by M1ROC4h output plus error trend at each grid point to obtain the corrected MIROC4h precipitation. As a historical analysis, using the corrected precipitation in the Sittaung River basin and observed river discharge at the outlet of the river, the hydrological model (HSPF (Hydrological Simulation Program Fortran)) calibration was carried out with consideration of the water utilization data for darn/reservoir and irrigation. As a projection analysis, future simulation of hourly discharge at the outlet of Sittaung River from 2015 to 2035 was conducted by using the corrected MIROC4h precipitation. The results of projection analysis show that high risks of flood will appear in 2023 and 2028 and the risks of draught will be expected in 2019-2021.展开更多
The concepts of seismic isolation and energy dissipation structures emerged in the early 1970s.In China,the first seismic isolation structure was finished in 1993,and the first energy dissipation structure was built a...The concepts of seismic isolation and energy dissipation structures emerged in the early 1970s.In China,the first seismic isolation structure was finished in 1993,and the first energy dissipation structure was built at about the same time.Up to 2007,China had more than 600 seismic isolation and about 100 energy dissipation building structures.In 2008,the huge Wenchuan earthquake hit the southwest of China,which triggered a bloom of new seismic isolation and energy dissipation structures.This paper presents the development history and representative applications of seismic isolation and energy dissipation structures in China,reviews the state-of-the-practice of Chinese design,and discusses the challenges in the future applications.Major findings are as follows:Basic design procedures are becoming standardized after more than ten years of experiences,which mainly involve determination of design earthquake forces,selection of ground motions,modeling and time-history analyses,and performance criteria.Nonlinear time-history analyses using multiple ground motions are the characteristic of the design of seismic isolation and energy dissipation structures.Regulations,standardization and quality control of devices,balance between performance and cost,comparison with real responses,and regular inspection are identified as the issues that should be improved to further promote the application of seismic isolation and energy dissipation structures in China.展开更多
The authors discuss the existence of pseudo almost periodic solutions of differential equations with piecewise constant argument by means of introducing new concept, pseudo almost periodic sequence.
基金supported by the Fundamental Research Funds for the Central Universities in China University of Mining and Technology (No. 2010QNB23)the Open Fund of Laboratory in China University of Mining and Technology (No. 2010-II-004)
文摘The present study analyzed the electromagnetic radiation(EMR) time series of the destruction process of coal or rock sample under uniaxial loading and the monitoring process in working face by means of fractal geometry,and results of the correlation dimension change curve of EMR time series were obtained.In the meantime,the current study also sought the fractal characteristic to the EMR signals by contrast to the change curve of EMR signals and explored the precursory phenomenon of rock burst.This paper concluded the main findings as followed:the EMR time series of the destruction process of coal or rock sample under uniaxial loading and the monitoring process in working face corresponded to fractal;the correlation dimension of EMR time series reflected the process of coal or rock damage deformation,that is,the inner damage of coal or rock made a change from random to order.In the field application,the correlation dimension served as a new index of forecasting the coal or rock dynamic disaster.
文摘Based on the comparison between several model outputs from CMIP5 (Coupled Model Intercomparison Project Phase-5) and the satellite rainfall mapping data of GSMaP (global satellite mapping of precipitation), This paper selected MIROC4h as a future projection of rainfall in the Sittaung River basin, Myanmar, with the fine spatial resolution of 0.5°. At first, MIROC4h projection towards 2035 was corrected by using the error trend (GSMaP-MIROC4h) for nine years over-rapping of both outputs from 2006 to 2014. Assuming the seasonal autoregressive processes, future error trend at each grid point was estimated by the time series forecast of SARMAP processes using the nine years training data. Then future projection correction was done by M1ROC4h output plus error trend at each grid point to obtain the corrected MIROC4h precipitation. As a historical analysis, using the corrected precipitation in the Sittaung River basin and observed river discharge at the outlet of the river, the hydrological model (HSPF (Hydrological Simulation Program Fortran)) calibration was carried out with consideration of the water utilization data for darn/reservoir and irrigation. As a projection analysis, future simulation of hourly discharge at the outlet of Sittaung River from 2015 to 2035 was conducted by using the corrected MIROC4h precipitation. The results of projection analysis show that high risks of flood will appear in 2023 and 2028 and the risks of draught will be expected in 2019-2021.
基金supported by the National Natural Science Foundation of China (Grant No. 51178250)the Tsinghua University (Grant No.2010z01001)
文摘The concepts of seismic isolation and energy dissipation structures emerged in the early 1970s.In China,the first seismic isolation structure was finished in 1993,and the first energy dissipation structure was built at about the same time.Up to 2007,China had more than 600 seismic isolation and about 100 energy dissipation building structures.In 2008,the huge Wenchuan earthquake hit the southwest of China,which triggered a bloom of new seismic isolation and energy dissipation structures.This paper presents the development history and representative applications of seismic isolation and energy dissipation structures in China,reviews the state-of-the-practice of Chinese design,and discusses the challenges in the future applications.Major findings are as follows:Basic design procedures are becoming standardized after more than ten years of experiences,which mainly involve determination of design earthquake forces,selection of ground motions,modeling and time-history analyses,and performance criteria.Nonlinear time-history analyses using multiple ground motions are the characteristic of the design of seismic isolation and energy dissipation structures.Regulations,standardization and quality control of devices,balance between performance and cost,comparison with real responses,and regular inspection are identified as the issues that should be improved to further promote the application of seismic isolation and energy dissipation structures in China.
文摘The authors discuss the existence of pseudo almost periodic solutions of differential equations with piecewise constant argument by means of introducing new concept, pseudo almost periodic sequence.