在研究DDS(Data Distribution Service数据分发服务)规范的分层结构和数据分发核心思想的基础上,分析了新一代压制火控系统对于数据实时传输能力的需求,并以任务服务器中数据库存储为例,说明了DDS传输服务软件在新一代压制火控系统中的...在研究DDS(Data Distribution Service数据分发服务)规范的分层结构和数据分发核心思想的基础上,分析了新一代压制火控系统对于数据实时传输能力的需求,并以任务服务器中数据库存储为例,说明了DDS传输服务软件在新一代压制火控系统中的具体应用。展开更多
Smart material and structure (SMS) is a challenging novel technique for the 21 century especially in fields of aviation and aerospace. Vibration and noise suppression smart structure is an important branch of SMS. T...Smart material and structure (SMS) is a challenging novel technique for the 21 century especially in fields of aviation and aerospace. Vibration and noise suppression smart structure is an important branch of SMS. There are several typical structures such as the cabin of an airplane, space station, the solar board of satellite and the rotor blade of a helicopter, of which the vibrations and radiation noises have bad influences on precise equipments and aiming systems. In order to suppress vibrations and noises of these structures, several algorithms are applied to the models which simulate the structures. Experiments are performed to suppress vibrations and noises by bonding sensors and actuators to the structures at the optimized locations and using computer based measurement and control systems. For the blade vibration control of a helicopter, a non contact method of signal transmission by magneto electric coupling is discussed. The experimental results demonstrate that the methods used for active control are effective.展开更多
Including servo valve, hydraulic cylinder, mill and sensor and ignoring nonlinear factors, the linear dynamic model of hydraulic automatic gage control(HAGC) system of a temper rolling mill was theoretically derived. ...Including servo valve, hydraulic cylinder, mill and sensor and ignoring nonlinear factors, the linear dynamic model of hydraulic automatic gage control(HAGC) system of a temper rolling mill was theoretically derived. The order of the model is 4/4, and can be reduced to 2/2. Based on modulating functions method, utilizing numerical integration, we constructed the equivalent identification model of HAGC, and the least square estimation algorithm was established. The input and output data were acquired on line at temper rolling mill in Shangshai Baosteel Group Corporation, and the continuous time model of HAGC system was estimated with the proposed method. At different modulating window intervals, the estimated parameters changed remarkably. When the frequency bandwidth of modulating filter matches that of estimated system, the parameters can be estimated accurately. Finally, the dynamic model of the HAGC was obtained and validated based on the spectral analysis result.展开更多
The highly nonlinear behavior of the system limits the performance of classical linear proportional and integral (PI) controllers used for hot rolling. An active disturbance rejection controller is proposed in this ...The highly nonlinear behavior of the system limits the performance of classical linear proportional and integral (PI) controllers used for hot rolling. An active disturbance rejection controller is proposed in this paper to deal with the nonlinear problem of hydraulic servo system in order to preserve last response and small overshoot of control system. The active disturbance rejection (ADR) controller is composed of nonlinear tracking differentiator (TD), extended state observer (ESO) and nonlinear feedback (NF) law. An example of the hydraulic edger system case study is investigated to show the effectiveness and robustness of the proposed nonlinear controller, especially, in the circumstance of foreign disturbance and working condition variation, compared with classic PI controller.展开更多
The thrust hydraulic system of the prototype shield machine with pressure and flow compound control scheme was introduced. The experimental system integrated with proportional valves for study was designed. Dynamics m...The thrust hydraulic system of the prototype shield machine with pressure and flow compound control scheme was introduced. The experimental system integrated with proportional valves for study was designed. Dynamics modeling of multi-cylinder thrust system and synchronous control design were accomplished. The simulation of the synchronization motion control system was completed in AMESim and Matlab/Simulink software environments. The experiment was conducted by means of master/slave PID with dead band compensating flow and conventional PID regulating pressure. The experimental results show that the proposed thrust hydraulic system and its control strategy can meet the requirements of tunneling in motion and posture control for the shield machine, keeping the non-synchronous error within ±3 mm.展开更多
Using hydraulic power steering system of model EIMCO 922 load-haul-dump vehicle as a simulation example, the dynamic characteristics of hydraulic power steering system in load-haul-dump vehicle were simulated and disc...Using hydraulic power steering system of model EIMCO 922 load-haul-dump vehicle as a simulation example, the dynamic characteristics of hydraulic power steering system in load-haul-dump vehicle were simulated and discussed with SIMULINK software and hydraulic control theory. The results show that the dynamic characteristics of hydraulic power steering system are improved obviously by using bladder accumulator, the hydraulic power steering system of model EIMCO 922 load-haul-dump vehicle generates vibration at the initial stage under the normal steering condition of pulse input, and its static response time is 0.25 s shorter than that without bladder accumulator. Under the normal steering working condition, the capacity of steering accumulator for absorbing pulse is directly proportional to the cross section area of connecting pipeline, and inversely proportional to the length of connecting pipeline. At the same time, the precharge pressure of nitrogen in steering accumulator should be 60%80% of the rated minimum working pressure of hydraulic power steering system. Under the abnormal steering working condition, the steering cylinder piston may obtain higher motion velocity, and the dynamic response velocity of hydraulic power steering system can be increased by reducing the pressure drop of hydraulic pipelines between the accumulator and steering cylinder and by increasing the rated pressure of hydraulic power steering system, but the dynamic characteristics of hydraulic power steering system in load-haul-dump vehicle have nothing to do with the precharge pressure of nitrogen in steering accumulator.展开更多
A kind of active vibration control method was presented based on active damping and optimization design for driving load of multibody system with quick startup and brake. Dynamical equation of multibody system with qu...A kind of active vibration control method was presented based on active damping and optimization design for driving load of multibody system with quick startup and brake. Dynamical equation of multibody system with quick startup and brake and piezoelectric actuators intelligent structure was built. The optimum driving load was calculated by applying the presented method. The self-sensing and self-tuning closed-loop active vibration control in quick startup and brake process was realized. The control algorithm, using local velocity negative feedback, i.e. the output of a sensor only affects the output of the actuator collocated, can induce damping effectively to actively suppress the system vibration. Based on the optimization design for driving load of multibody system with quick startup and bake, the active damping of piezoelectric actuators intelligent structure was used to farther suppress the vibration of system. Theoretical analysis and calculation of numerical show that the proposed method makes the vibration of system decrease more than the optimal design method for driving load of multibody system.展开更多
文摘Smart material and structure (SMS) is a challenging novel technique for the 21 century especially in fields of aviation and aerospace. Vibration and noise suppression smart structure is an important branch of SMS. There are several typical structures such as the cabin of an airplane, space station, the solar board of satellite and the rotor blade of a helicopter, of which the vibrations and radiation noises have bad influences on precise equipments and aiming systems. In order to suppress vibrations and noises of these structures, several algorithms are applied to the models which simulate the structures. Experiments are performed to suppress vibrations and noises by bonding sensors and actuators to the structures at the optimized locations and using computer based measurement and control systems. For the blade vibration control of a helicopter, a non contact method of signal transmission by magneto electric coupling is discussed. The experimental results demonstrate that the methods used for active control are effective.
文摘Including servo valve, hydraulic cylinder, mill and sensor and ignoring nonlinear factors, the linear dynamic model of hydraulic automatic gage control(HAGC) system of a temper rolling mill was theoretically derived. The order of the model is 4/4, and can be reduced to 2/2. Based on modulating functions method, utilizing numerical integration, we constructed the equivalent identification model of HAGC, and the least square estimation algorithm was established. The input and output data were acquired on line at temper rolling mill in Shangshai Baosteel Group Corporation, and the continuous time model of HAGC system was estimated with the proposed method. At different modulating window intervals, the estimated parameters changed remarkably. When the frequency bandwidth of modulating filter matches that of estimated system, the parameters can be estimated accurately. Finally, the dynamic model of the HAGC was obtained and validated based on the spectral analysis result.
基金Project supported by the National Basic Research Program (973) of China (No. 2006CB705400)the National Natural Science Foun- dation of China (No. 50575200)
文摘The highly nonlinear behavior of the system limits the performance of classical linear proportional and integral (PI) controllers used for hot rolling. An active disturbance rejection controller is proposed in this paper to deal with the nonlinear problem of hydraulic servo system in order to preserve last response and small overshoot of control system. The active disturbance rejection (ADR) controller is composed of nonlinear tracking differentiator (TD), extended state observer (ESO) and nonlinear feedback (NF) law. An example of the hydraulic edger system case study is investigated to show the effectiveness and robustness of the proposed nonlinear controller, especially, in the circumstance of foreign disturbance and working condition variation, compared with classic PI controller.
基金Project(50425518) supported by National Outstanding Youth Foundation of China Project(2007CB714004) supported by National Basic Research Program of China
文摘The thrust hydraulic system of the prototype shield machine with pressure and flow compound control scheme was introduced. The experimental system integrated with proportional valves for study was designed. Dynamics modeling of multi-cylinder thrust system and synchronous control design were accomplished. The simulation of the synchronization motion control system was completed in AMESim and Matlab/Simulink software environments. The experiment was conducted by means of master/slave PID with dead band compensating flow and conventional PID regulating pressure. The experimental results show that the proposed thrust hydraulic system and its control strategy can meet the requirements of tunneling in motion and posture control for the shield machine, keeping the non-synchronous error within ±3 mm.
文摘Using hydraulic power steering system of model EIMCO 922 load-haul-dump vehicle as a simulation example, the dynamic characteristics of hydraulic power steering system in load-haul-dump vehicle were simulated and discussed with SIMULINK software and hydraulic control theory. The results show that the dynamic characteristics of hydraulic power steering system are improved obviously by using bladder accumulator, the hydraulic power steering system of model EIMCO 922 load-haul-dump vehicle generates vibration at the initial stage under the normal steering condition of pulse input, and its static response time is 0.25 s shorter than that without bladder accumulator. Under the normal steering working condition, the capacity of steering accumulator for absorbing pulse is directly proportional to the cross section area of connecting pipeline, and inversely proportional to the length of connecting pipeline. At the same time, the precharge pressure of nitrogen in steering accumulator should be 60%80% of the rated minimum working pressure of hydraulic power steering system. Under the abnormal steering working condition, the steering cylinder piston may obtain higher motion velocity, and the dynamic response velocity of hydraulic power steering system can be increased by reducing the pressure drop of hydraulic pipelines between the accumulator and steering cylinder and by increasing the rated pressure of hydraulic power steering system, but the dynamic characteristics of hydraulic power steering system in load-haul-dump vehicle have nothing to do with the precharge pressure of nitrogen in steering accumulator.
基金Project(50390063) supported by the National Natural Science Foundation of China
文摘A kind of active vibration control method was presented based on active damping and optimization design for driving load of multibody system with quick startup and brake. Dynamical equation of multibody system with quick startup and brake and piezoelectric actuators intelligent structure was built. The optimum driving load was calculated by applying the presented method. The self-sensing and self-tuning closed-loop active vibration control in quick startup and brake process was realized. The control algorithm, using local velocity negative feedback, i.e. the output of a sensor only affects the output of the actuator collocated, can induce damping effectively to actively suppress the system vibration. Based on the optimization design for driving load of multibody system with quick startup and bake, the active damping of piezoelectric actuators intelligent structure was used to farther suppress the vibration of system. Theoretical analysis and calculation of numerical show that the proposed method makes the vibration of system decrease more than the optimal design method for driving load of multibody system.