The structural and thermodynamic properties of Zr2A1C at high pressure and high temper- ature are investigated by first principles density functional theory method. The calculated lattice parameters of Zr2A1C are in g...The structural and thermodynamic properties of Zr2A1C at high pressure and high temper- ature are investigated by first principles density functional theory method. The calculated lattice parameters of Zr2A1C are in good agreement with the available theoretical data. The pressure dependences of the elastic constants, bulk modulus, shear modulus, Young's mod- ulus, and Vickers hardness of Zr2A1C are successfully obtained. The elastic anisotropy is examined through the computation of the direction dependence of Young's modulus. By using the quasiharmonic Debye model, the thermodynamic properties including the Debye temperature, heat capacity, volume thermal expansion coefficient, and Griineisen parameter at high pressure and temperature are predicted for the first time.展开更多
In the statistical standard literature the stationarity of a time dependent process generally is defined by the invariance in time of the distribution of the variable, like a SPL (sound pressure level) fluctuating i...In the statistical standard literature the stationarity of a time dependent process generally is defined by the invariance in time of the distribution of the variable, like a SPL (sound pressure level) fluctuating in time. However in reality there cannot exist constant distribution, respectively characteristics, in time in the strict mathematical sense because the time intervals of observation only can be finite due to practical reasons. Hence on every distribution and characteristics based on it a certain, but evaluable uncertainty is imposed. For monitoring these uncertainties the online-measurement technique, i.e. primarily appropriate software, is already available, also for customers. According to this state of the art the following expanded definition of the stationarity is proposed: Stationarity during a quality controlled measurement process becomes established, when the upper confidence limit of the interesting specific characteristic has no positive slope in time and correspondingly the lower confidence limit of the specific characteristic no negative slope and, as a third, a common condition, the interesting specific characteristic has adjusted itself to a constant position in time. From this a systematic criteria scheme is established and in examples applied on different in- and outdoor situations of sound impact.展开更多
The pressure dependence of the onset of the formation of Ta C and Ta2 C from the elements has been investigated by in situ X-ray diffraction and pyrometry.Ta C has been synthesized by the reaction of Ta and graphite a...The pressure dependence of the onset of the formation of Ta C and Ta2 C from the elements has been investigated by in situ X-ray diffraction and pyrometry.Ta C has been synthesized by the reaction of Ta and graphite at pressures between 8.6 and 14.3 GPa and at temperatures up to 2,300 K using a laser-heated diamond anvil cell. The products were characterized by X-ray diffraction. Ta and graphite begin to react around 1,100 K at ambient pressure conditions, and the reaction temperature increases with increasing pressure. A linear extrapolation of these data is consistent with recent observations of the formation of Ta C at 90 GPa and 3,600 K. We show that diffusion of carbon into tantalum significantly changes the lattice parameter of up to 2 % in the pressure range of up to19 GPa. In some experiments, Ta2 C was formed concomitantly. The experimentally determined bulk modulus of Ta2 C is B0;exp:= 286(5) GPa. Other tantalum carbide phases were not observed.展开更多
The structural,electronic and elastic properties of solid nitromethane are investigated under pressure by performing first-principles density functional theory(DFT)calculations within the generalized gradient approxim...The structural,electronic and elastic properties of solid nitromethane are investigated under pressure by performing first-principles density functional theory(DFT)calculations within the generalized gradient approximation(GGA)and the local density approximation(LDA).The obtained ground state structure properties are found to be consistent with existing experimental and theoretical results.The pressure-induced variations of structure parameters(a,b,c and V)indicate that the solid nitromethane has an anisotropic compressibility,and the compression along the c direction is more difficult than along a and b directions.From the vibration curves of intermolecular bond length and bond angle,we find that the C—N bond is the most sensitive among these bonds under pressure,suggesting that the C—N bonds may be broken first under external loading.The influence of pressure on the electronic properties of solid NM has been studied,indicating that solid NM is an insulating compound with a large indirect band gap and tends to be a semiconductor with increasing pressure.Finally,we predict the elastic constants and their pressure dependence for the solid NM with the bulk modulus,Young’s modulus,shear modulus and the Poisson’s ratio derived.展开更多
We study the thermal transport of few-layer graphene nanoribbons in the presence of the transversal pressure by using molecular dynamics simulations. It is reported that the pressure can improve the thermal conductivi...We study the thermal transport of few-layer graphene nanoribbons in the presence of the transversal pressure by using molecular dynamics simulations. It is reported that the pressure can improve the thermal conductivity of few-layer graphene nanoribbons. This improvement can reach 37.5% in the low temperature region. The pressure dependence of thermal conductivity is also investigated for different length, width and thickness of few-layer graphene. Our results provide an alternative option to tuning thermal conductivity of few-layer graphene nanoribbons, b-arthermore, it maybe indicate a so-called pressure-thermM effect in nanomaterials.展开更多
基金This work was supportted by the National Natural Science Foundation of China (No.11447176 and No.11447152), the National Natural Science Foundation of China and the China Academy of Engineering Physics (No.U1230201), and the Doctor Foundation of Southwest University of Science and Technology (No.13zx7137 and No.14zx7167).
文摘The structural and thermodynamic properties of Zr2A1C at high pressure and high temper- ature are investigated by first principles density functional theory method. The calculated lattice parameters of Zr2A1C are in good agreement with the available theoretical data. The pressure dependences of the elastic constants, bulk modulus, shear modulus, Young's mod- ulus, and Vickers hardness of Zr2A1C are successfully obtained. The elastic anisotropy is examined through the computation of the direction dependence of Young's modulus. By using the quasiharmonic Debye model, the thermodynamic properties including the Debye temperature, heat capacity, volume thermal expansion coefficient, and Griineisen parameter at high pressure and temperature are predicted for the first time.
文摘In the statistical standard literature the stationarity of a time dependent process generally is defined by the invariance in time of the distribution of the variable, like a SPL (sound pressure level) fluctuating in time. However in reality there cannot exist constant distribution, respectively characteristics, in time in the strict mathematical sense because the time intervals of observation only can be finite due to practical reasons. Hence on every distribution and characteristics based on it a certain, but evaluable uncertainty is imposed. For monitoring these uncertainties the online-measurement technique, i.e. primarily appropriate software, is already available, also for customers. According to this state of the art the following expanded definition of the stationarity is proposed: Stationarity during a quality controlled measurement process becomes established, when the upper confidence limit of the interesting specific characteristic has no positive slope in time and correspondingly the lower confidence limit of the specific characteristic no negative slope and, as a third, a common condition, the interesting specific characteristic has adjusted itself to a constant position in time. From this a systematic criteria scheme is established and in examples applied on different in- and outdoor situations of sound impact.
基金the Deutsche Forschungsgemeinschaft (DFG), Germany, for financial support within the priority programme Matter at extreme conditions SPP1236 (project WI 1232/25-1)The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Science, of the U.S. Department of Energy under contract DE-AC02-05CH11231+1 种基金This work was partially supported by COMPRES, the Consortium for Materials Properties Research in Earth Science under NSF Cooperative Agreement EAR 06-49658the Vereinigung der Freunde und F rderer der Goethe-Universitt Frankfurt
文摘The pressure dependence of the onset of the formation of Ta C and Ta2 C from the elements has been investigated by in situ X-ray diffraction and pyrometry.Ta C has been synthesized by the reaction of Ta and graphite at pressures between 8.6 and 14.3 GPa and at temperatures up to 2,300 K using a laser-heated diamond anvil cell. The products were characterized by X-ray diffraction. Ta and graphite begin to react around 1,100 K at ambient pressure conditions, and the reaction temperature increases with increasing pressure. A linear extrapolation of these data is consistent with recent observations of the formation of Ta C at 90 GPa and 3,600 K. We show that diffusion of carbon into tantalum significantly changes the lattice parameter of up to 2 % in the pressure range of up to19 GPa. In some experiments, Ta2 C was formed concomitantly. The experimentally determined bulk modulus of Ta2 C is B0;exp:= 286(5) GPa. Other tantalum carbide phases were not observed.
基金supported by the Construction Plan for Scientific Research Innovation Teams of Universities in Sichuan Province(Grant No.12TD008)the National Basic Research Program of China(Grant No.2011CB808201)the Scientific Research Fund of Sichuan Provincial Education Department(Grant No.11ZB079)
文摘The structural,electronic and elastic properties of solid nitromethane are investigated under pressure by performing first-principles density functional theory(DFT)calculations within the generalized gradient approximation(GGA)and the local density approximation(LDA).The obtained ground state structure properties are found to be consistent with existing experimental and theoretical results.The pressure-induced variations of structure parameters(a,b,c and V)indicate that the solid nitromethane has an anisotropic compressibility,and the compression along the c direction is more difficult than along a and b directions.From the vibration curves of intermolecular bond length and bond angle,we find that the C—N bond is the most sensitive among these bonds under pressure,suggesting that the C—N bonds may be broken first under external loading.The influence of pressure on the electronic properties of solid NM has been studied,indicating that solid NM is an insulating compound with a large indirect band gap and tends to be a semiconductor with increasing pressure.Finally,we predict the elastic constants and their pressure dependence for the solid NM with the bulk modulus,Young’s modulus,shear modulus and the Poisson’s ratio derived.
基金Supported in part by the National Natural Science Foundation of China under Grant Nos.11004082 and 11175067the Natural Science Foundation of Guangdong Province under Grant Nos.10451063201005249 and S201101000332the Fundamental Research Funds for the Central Universities,JNU under Grant Nos.21611437 and 50421288
文摘We study the thermal transport of few-layer graphene nanoribbons in the presence of the transversal pressure by using molecular dynamics simulations. It is reported that the pressure can improve the thermal conductivity of few-layer graphene nanoribbons. This improvement can reach 37.5% in the low temperature region. The pressure dependence of thermal conductivity is also investigated for different length, width and thickness of few-layer graphene. Our results provide an alternative option to tuning thermal conductivity of few-layer graphene nanoribbons, b-arthermore, it maybe indicate a so-called pressure-thermM effect in nanomaterials.