Laojunmiao coal samples from the eastern Junggar basin were studied to understand the relationship between coal resistivity and the physical parameters of coal reservoirs under high temperatures and pressures.Specific...Laojunmiao coal samples from the eastern Junggar basin were studied to understand the relationship between coal resistivity and the physical parameters of coal reservoirs under high temperatures and pressures.Specifically,we analysed the relationship of coal resistivity to porosity and permeability via heating and pressurization experiments.The results indicated that coal resistivity decreases exponentially with increasing pressure.Increasing the temperature decreases the resistivity.The sensitivity of coal resistivity to the confining pressure is worse when the temperature is higher.The resistivity of dry coal samples was linearly related to φ~m.Increasing the temperature decreased the cementation exponent(m).Increasing the confining pressure exponentially decreases the porosity.Decreasing the pressure increases the resistivity and porosity for a constant temperature.Increasing the temperature yields a quadratic relationship between the resistivity and permeability for a constant confining pressure.Based on the Archie formula,we obtained the coupling relationship between coal resistivity and permeability for Laojunmiao coal samples at different temperatures and confining pressures.展开更多
Recently,the notion of non-standard Lagrangians was discussed widely in literature in an attempt to explore the inverse variational problem of nonlinear differential equations.Different forms of non-standard Lagrangia...Recently,the notion of non-standard Lagrangians was discussed widely in literature in an attempt to explore the inverse variational problem of nonlinear differential equations.Different forms of non-standard Lagrangians were introduced in literature and have revealed nice mathematical and physical properties.One interesting form related to the inverse variational problem is the logarithmic Lagrangian,which has a number of motivating features related to the Li′enard-type and Emden nonlinear differential equations.Such types of Lagrangians lead to nonlinear dynamics based on non-standard Hamiltonians.In this communication,we show that some new dynamical properties are obtained in stellar dynamics if standard Lagrangians are replaced by Logarithmic Lagrangians and their corresponding non-standard Hamiltonians.One interesting consequence concerns the emergence of an extra pressure term,which is related to the gravitational field suggesting that gravitation may act as a pressure in a strong gravitational field.The case of the stellar halo of the Milky Way is considered.展开更多
The XFEM(extended finite element method) has a lot of advantages over other numerical methods to resolve discontinuities across quasi-static interfaces due to the jump in fluidic parameters or surface tension.However,...The XFEM(extended finite element method) has a lot of advantages over other numerical methods to resolve discontinuities across quasi-static interfaces due to the jump in fluidic parameters or surface tension.However,singularities corresponding to enriched degrees of freedom(DOFs) embedded in XFEM arise in the discrete pressure Poisson equations.In this paper,constraints on these DOFs are derived from the interfacial equilibrium condition and introduced in terms of stabilized Lagrange multipliers designed for non-boundary-fitted meshes to address this issue.Numerical results show that the weak and strong discontinuities in pressure with straight and circular interfaces are accurately reproduced by the constraints.Comparisons with the SUPG/PSPG(streamline upwind/pressure stabilizing Petrov-Galerkin) method without Lagrange multipliers validate the applicability and flexibility of the proposed constrained algorithm to model problems with quasi-static interfaces.展开更多
基金supported by the National Natural Science Foundation of China(No.41302131)the Special Fund for Fostering Major Projects at the China University of Mining and Technology(No.2014ZDP03)the Fundamental Research Funds for the Central Universities(No.2012QNB32)
文摘Laojunmiao coal samples from the eastern Junggar basin were studied to understand the relationship between coal resistivity and the physical parameters of coal reservoirs under high temperatures and pressures.Specifically,we analysed the relationship of coal resistivity to porosity and permeability via heating and pressurization experiments.The results indicated that coal resistivity decreases exponentially with increasing pressure.Increasing the temperature decreases the resistivity.The sensitivity of coal resistivity to the confining pressure is worse when the temperature is higher.The resistivity of dry coal samples was linearly related to φ~m.Increasing the temperature decreased the cementation exponent(m).Increasing the confining pressure exponentially decreases the porosity.Decreasing the pressure increases the resistivity and porosity for a constant temperature.Increasing the temperature yields a quadratic relationship between the resistivity and permeability for a constant confining pressure.Based on the Archie formula,we obtained the coupling relationship between coal resistivity and permeability for Laojunmiao coal samples at different temperatures and confining pressures.
文摘Recently,the notion of non-standard Lagrangians was discussed widely in literature in an attempt to explore the inverse variational problem of nonlinear differential equations.Different forms of non-standard Lagrangians were introduced in literature and have revealed nice mathematical and physical properties.One interesting form related to the inverse variational problem is the logarithmic Lagrangian,which has a number of motivating features related to the Li′enard-type and Emden nonlinear differential equations.Such types of Lagrangians lead to nonlinear dynamics based on non-standard Hamiltonians.In this communication,we show that some new dynamical properties are obtained in stellar dynamics if standard Lagrangians are replaced by Logarithmic Lagrangians and their corresponding non-standard Hamiltonians.One interesting consequence concerns the emergence of an extra pressure term,which is related to the gravitational field suggesting that gravitation may act as a pressure in a strong gravitational field.The case of the stellar halo of the Milky Way is considered.
文摘The XFEM(extended finite element method) has a lot of advantages over other numerical methods to resolve discontinuities across quasi-static interfaces due to the jump in fluidic parameters or surface tension.However,singularities corresponding to enriched degrees of freedom(DOFs) embedded in XFEM arise in the discrete pressure Poisson equations.In this paper,constraints on these DOFs are derived from the interfacial equilibrium condition and introduced in terms of stabilized Lagrange multipliers designed for non-boundary-fitted meshes to address this issue.Numerical results show that the weak and strong discontinuities in pressure with straight and circular interfaces are accurately reproduced by the constraints.Comparisons with the SUPG/PSPG(streamline upwind/pressure stabilizing Petrov-Galerkin) method without Lagrange multipliers validate the applicability and flexibility of the proposed constrained algorithm to model problems with quasi-static interfaces.