The importance of the pre-tensioned force of rock bolts has been recognized by more and more researchers. To investi- gate the effect of pre-tensioned rock bolts on stress redistribution around roadways, a numerical a...The importance of the pre-tensioned force of rock bolts has been recognized by more and more researchers. To investi- gate the effect of pre-tensioned rock bolts on stress redistribution around roadways, a numerical analysis was carried out using FLAC3D and a special post-process methodology, using surfer, is proposed to process the numerical simulation results. The results indicate that pre-tensioned rock bolts have a significant effect on stress redistribution around a roadway. In the roof, pre-tensioned rock bolts greatly increase vertical stress; as a result, the strength of the rock mass increased significantly which results in a greater capacity of bearing a large horizontal stress. The horizontal stress decreases in the upper section of the roof, indicating that pre-tensioned rock bolts significantly reduce the coefficient and the size of the region concentration of horizontal stress. At the lat- eral side, pre-tensioned rock bolts greatly increase the horizontal stress; therefore, the rock mass strength significantly increases which results also in a greater capacity of bearing a large vertical stress. The greater the size of pre-tensioned force, the larger the region of stress redistribution around a roadway is affected and the higher the size of the stress on the roadway surface the more the rock mass strength increases.展开更多
As a transport means of oil and gas the submarine pipeline has many merits, such as continuous delivery, large conveying capacity, convenient management, etc. A tube was chosen in our study to simulate the submarine p...As a transport means of oil and gas the submarine pipeline has many merits, such as continuous delivery, large conveying capacity, convenient management, etc. A tube was chosen in our study to simulate the submarine pipeline in the experiments. A high accuracy instrument ADV and high precision point-type pressure sensors were used to measure the parameters of the flow field, including the pressure distribution, velocities at seven cross sections near the submarine pipeline with five different clearance ratios, and twelve dynamic pressure values around the pipeline. The pressure distributions and velocity changes around the pipe under dif- ferent flow velocities and clearance ratios were analyzed. These results might be useful for further study of submarine pipeline ero- sion and protection.展开更多
AIM: To investigate the flow and mixing at the duodenal stump after gastric resection, a computer simulation was implemented. METHODS: Using the finite element method, two different Billroth fl procedure cases (A a...AIM: To investigate the flow and mixing at the duodenal stump after gastric resection, a computer simulation was implemented. METHODS: Using the finite element method, two different Billroth fl procedure cases (A and B) were modeled. Case A was defined with a shorter and almost straight duodenal section, while case B has a much longer and curved duodenal section. Velocity, pressure and food concentration distribution were determined and the numerical results were compared with experimental observations. RESULTS: The pressure distribution obtained by numerical simulation was in the range of the recorded experimental results. Case A had a more favorable pressure distribution in comparison with case B. However, case B had better performance in terms of food transport because of more continual food distribution, as well as better emptying of the duodena section. CONCLUSION: This study offers insight into the transport process within the duodenal stump section after surgical intervention, which can be useful for future patient-specific predictions of a surgical outcome.展开更多
In order to study the distribution of lateral floor abutment pressure at a working face,we first used elasticity theory to establish a distribution model of lateral floor abutment pressure and then analysed its distri...In order to study the distribution of lateral floor abutment pressure at a working face,we first used elasticity theory to establish a distribution model of lateral floor abutment pressure and then analysed its distribution.Second,we established a three-dimensional numerical simulation model of the Haizi Coal Mine No.86 mining area by using FLAC^(3D)(ITASCA Consulting Group) software.We investigated the distribution of lateral floor abutment pressure of a stope,which indicated that the position of abutment pressure peak varies at different floor depths.We then determined the rational reinforcement range of a floor roadway,based on the conclusion reached earlier.Finally,we used our conclusions in support of the No.86 mining area crossing-roadway.The supported crossing-roadway remained stable when mining the upper workface,which validates the accuracy of our numerical simulation and provides a future reference for the support of span-roadways under similar conditions.展开更多
Wind loading is one of the most significant factors in civil engineering that influences the structural design considerably.In this paper,a group of manufacturing equipments for downburst simulation based on impinging...Wind loading is one of the most significant factors in civil engineering that influences the structural design considerably.In this paper,a group of manufacturing equipments for downburst simulation based on impinging jet model was developed for investigating the wind loads on structures:including the centrifugal air bellows to generate airflow,a movable platform to realize multiple locations of the building and a freely rotatable turntable to implement alterable building angles.Hundreds of transducers were used to measure the wind action on all surfaces of the building.The pressure coefficients calculated from the observed data were utilized to evaluate the downburst wind load.Pressure distributions on three prism-shaped building models with different placements and angles were investigated to obtain the maximum wind action and mean pressure coefficients.The results showed that the maximum pressure coefficient would reach 1.0 on the top surface if the downburst just broke out over the edifice.Considering that the building was in the developing field of the downburst,the top and the front surfaces would be under high wind pressure and only the back surface would endure wind suction.When the downdraft happens away from the prismatic building,all surfaces,except the front surface,would subject to suction with different degrees.It was also found that the pressure coefficient on the right surface would get its negative peak at first and then go straight up to 0.6 as the angle changed from 0°to 45°and the wind pressure on the front surface would decrease slightly through the whole process.The assertive results provide elemental data for structural wind-resistant design in civil engineering for the downburst-prone areas.展开更多
Based on the Navier-Stokes equations and the Spalart-Allmaras turbulence model,three dimensional turbulent flow fields in centrifugal pump with long-mid-short blade complex impeller are calculated and analyzed numeric...Based on the Navier-Stokes equations and the Spalart-Allmaras turbulence model,three dimensional turbulent flow fields in centrifugal pump with long-mid-short blade complex impeller are calculated and analyzed numerically.The relative velocity and pressure distributions in the flowpart are obtained.It is found that the flow in the passage of the complex impeller is unsymmetrical due to the joint action between volute and impeller.The back-flow region is at inlet of long-blade suction side,near middle part of long-blade pressure side and outlet of short-blade suction side.The flow near volute throat is affected greatly by volute.The relative velocity is large and it is easy to bring back flow at outlet of the complex impeller near volute throat.The static and total pressure rise uniformly from inlet to outlet in the impeller.At impeller outlet,the pressure periodically decreases from pressure side to suction side,and then the static pressure sharply rise near the throat.The experimental results show that the back flow in the impeller has an important influence on the performance of pump.展开更多
We conduct a computational fluid dynamics simulation to investigate the behaviors of bubble breakup in a microfluidic T-junction using volume-of-fluid method to represent the interface. The evolution of bubble mor- ph...We conduct a computational fluid dynamics simulation to investigate the behaviors of bubble breakup in a microfluidic T-junction using volume-of-fluid method to represent the interface. The evolution of bubble mor- phology and the distributions of velocity and pressure in flow field are analyzed, and the effect of width ratio between main channel and branch on the bubble mor- phology are evaluated. The results indicate that, the "tun- nel" breakup, obstructed breakup, combined breakup and non-breakup are observed during the bubble flows through the T-junctions under different condition. The whole bub- ble breakup process undergoes the extension, squeeze and pinch-off stages, while the non-breakup process experi- ences extension and pushing stages. We find that, in the squeeze stage, a local vortex flow forms at the front edge of the bubble for the "tunnel" breakup while the velocity inside the bubble is of a parabolic distribution for the obstructed breakup. Irrespective of non-breakup regimes, there is a sudden pressure drop occurring at the gas-liquid interface of the bubble in the squeeze stage, and the pres- sure drop at the front interface is far larger than that at the depression region. The transition of the bubble breakup regime through the T-junction occurs with an increase in width ratio of main channel to the branch, which sequen- tially experiences the non-breakup regime, "tunnel" breakup regime and obstructed breakup regime. The flow regime diagrams are plotted with a power-law correlation to distinguish the bubble/droplet breakup and non-breakup regimes, which also characterize the difference between bubble and droplet breakup through a T-junction.展开更多
基金Projects 2006BAB16B02 and 2006BAK03B06 supported by the National Scientific & Technological Foundation of China
文摘The importance of the pre-tensioned force of rock bolts has been recognized by more and more researchers. To investi- gate the effect of pre-tensioned rock bolts on stress redistribution around roadways, a numerical analysis was carried out using FLAC3D and a special post-process methodology, using surfer, is proposed to process the numerical simulation results. The results indicate that pre-tensioned rock bolts have a significant effect on stress redistribution around a roadway. In the roof, pre-tensioned rock bolts greatly increase vertical stress; as a result, the strength of the rock mass increased significantly which results in a greater capacity of bearing a large horizontal stress. The horizontal stress decreases in the upper section of the roof, indicating that pre-tensioned rock bolts significantly reduce the coefficient and the size of the region concentration of horizontal stress. At the lat- eral side, pre-tensioned rock bolts greatly increase the horizontal stress; therefore, the rock mass strength significantly increases which results also in a greater capacity of bearing a large vertical stress. The greater the size of pre-tensioned force, the larger the region of stress redistribution around a roadway is affected and the higher the size of the stress on the roadway surface the more the rock mass strength increases.
文摘As a transport means of oil and gas the submarine pipeline has many merits, such as continuous delivery, large conveying capacity, convenient management, etc. A tube was chosen in our study to simulate the submarine pipeline in the experiments. A high accuracy instrument ADV and high precision point-type pressure sensors were used to measure the parameters of the flow field, including the pressure distribution, velocities at seven cross sections near the submarine pipeline with five different clearance ratios, and twelve dynamic pressure values around the pipeline. The pressure distributions and velocity changes around the pipe under dif- ferent flow velocities and clearance ratios were analyzed. These results might be useful for further study of submarine pipeline ero- sion and protection.
基金Supported by The Ministry of Science of Serbia with the grants OI144028 and TR12007
文摘AIM: To investigate the flow and mixing at the duodenal stump after gastric resection, a computer simulation was implemented. METHODS: Using the finite element method, two different Billroth fl procedure cases (A and B) were modeled. Case A was defined with a shorter and almost straight duodenal section, while case B has a much longer and curved duodenal section. Velocity, pressure and food concentration distribution were determined and the numerical results were compared with experimental observations. RESULTS: The pressure distribution obtained by numerical simulation was in the range of the recorded experimental results. Case A had a more favorable pressure distribution in comparison with case B. However, case B had better performance in terms of food transport because of more continual food distribution, as well as better emptying of the duodena section. CONCLUSION: This study offers insight into the transport process within the duodenal stump section after surgical intervention, which can be useful for future patient-specific predictions of a surgical outcome.
基金supported by the National Basic Research Program of China(No.2010CB226805)the National Natural Science Foundation of China(Nos.50874103 and 50974115)+1 种基金the Natural Science Foundation of Jiangsu Province(No.KB2008135)the State Key Laboratory Fund(No.SKLGDUEK0905)
文摘In order to study the distribution of lateral floor abutment pressure at a working face,we first used elasticity theory to establish a distribution model of lateral floor abutment pressure and then analysed its distribution.Second,we established a three-dimensional numerical simulation model of the Haizi Coal Mine No.86 mining area by using FLAC^(3D)(ITASCA Consulting Group) software.We investigated the distribution of lateral floor abutment pressure of a stope,which indicated that the position of abutment pressure peak varies at different floor depths.We then determined the rational reinforcement range of a floor roadway,based on the conclusion reached earlier.Finally,we used our conclusions in support of the No.86 mining area crossing-roadway.The supported crossing-roadway remained stable when mining the upper workface,which validates the accuracy of our numerical simulation and provides a future reference for the support of span-roadways under similar conditions.
基金supported by the National Natural Science Foundation of China(Grant No.51161120359)
文摘Wind loading is one of the most significant factors in civil engineering that influences the structural design considerably.In this paper,a group of manufacturing equipments for downburst simulation based on impinging jet model was developed for investigating the wind loads on structures:including the centrifugal air bellows to generate airflow,a movable platform to realize multiple locations of the building and a freely rotatable turntable to implement alterable building angles.Hundreds of transducers were used to measure the wind action on all surfaces of the building.The pressure coefficients calculated from the observed data were utilized to evaluate the downburst wind load.Pressure distributions on three prism-shaped building models with different placements and angles were investigated to obtain the maximum wind action and mean pressure coefficients.The results showed that the maximum pressure coefficient would reach 1.0 on the top surface if the downburst just broke out over the edifice.Considering that the building was in the developing field of the downburst,the top and the front surfaces would be under high wind pressure and only the back surface would endure wind suction.When the downdraft happens away from the prismatic building,all surfaces,except the front surface,would subject to suction with different degrees.It was also found that the pressure coefficient on the right surface would get its negative peak at first and then go straight up to 0.6 as the angle changed from 0°to 45°and the wind pressure on the front surface would decrease slightly through the whole process.The assertive results provide elemental data for structural wind-resistant design in civil engineering for the downburst-prone areas.
基金supported by National Natural Science Foundation of China granted No.20706049 and No.50976105Zhejiang Provincial Natural Science Foundation Granted No.R1100530 and No.R107635
文摘Based on the Navier-Stokes equations and the Spalart-Allmaras turbulence model,three dimensional turbulent flow fields in centrifugal pump with long-mid-short blade complex impeller are calculated and analyzed numerically.The relative velocity and pressure distributions in the flowpart are obtained.It is found that the flow in the passage of the complex impeller is unsymmetrical due to the joint action between volute and impeller.The back-flow region is at inlet of long-blade suction side,near middle part of long-blade pressure side and outlet of short-blade suction side.The flow near volute throat is affected greatly by volute.The relative velocity is large and it is easy to bring back flow at outlet of the complex impeller near volute throat.The static and total pressure rise uniformly from inlet to outlet in the impeller.At impeller outlet,the pressure periodically decreases from pressure side to suction side,and then the static pressure sharply rise near the throat.The experimental results show that the back flow in the impeller has an important influence on the performance of pump.
文摘We conduct a computational fluid dynamics simulation to investigate the behaviors of bubble breakup in a microfluidic T-junction using volume-of-fluid method to represent the interface. The evolution of bubble mor- phology and the distributions of velocity and pressure in flow field are analyzed, and the effect of width ratio between main channel and branch on the bubble mor- phology are evaluated. The results indicate that, the "tun- nel" breakup, obstructed breakup, combined breakup and non-breakup are observed during the bubble flows through the T-junctions under different condition. The whole bub- ble breakup process undergoes the extension, squeeze and pinch-off stages, while the non-breakup process experi- ences extension and pushing stages. We find that, in the squeeze stage, a local vortex flow forms at the front edge of the bubble for the "tunnel" breakup while the velocity inside the bubble is of a parabolic distribution for the obstructed breakup. Irrespective of non-breakup regimes, there is a sudden pressure drop occurring at the gas-liquid interface of the bubble in the squeeze stage, and the pres- sure drop at the front interface is far larger than that at the depression region. The transition of the bubble breakup regime through the T-junction occurs with an increase in width ratio of main channel to the branch, which sequen- tially experiences the non-breakup regime, "tunnel" breakup regime and obstructed breakup regime. The flow regime diagrams are plotted with a power-law correlation to distinguish the bubble/droplet breakup and non-breakup regimes, which also characterize the difference between bubble and droplet breakup through a T-junction.