The effect of operating pressure on the radial heat transfer coefficients, in a non-adiabatic fixed packed bed was studied at atmospheric and higher pressures, The study was concerned with investigating the effect of ...The effect of operating pressure on the radial heat transfer coefficients, in a non-adiabatic fixed packed bed was studied at atmospheric and higher pressures, The study was concerned with investigating the effect of the pressure on the radial thermal conductivity (K^r) and wall heat transfer coefficient (h~) for both pellets and monolith catalysts. The study included beds that were packed with pellets and monoliths, separately. The radial temperature distribution was measured at different beds heights and feed flow rates for both types of packing. Steady-state temperatures were measured using nine chromel-alumel thermocouples arranged on a stainless steel-cross. After temperatures were collected, the radial thermal conductivity and wall heat transfer coefficient were calculated using a two-dimensional pseudo-homogeneous model. The results showed that, the radial temperature profile at the entrance of the heating section was nearly even, and a constant temperature along the radius (0F/0r=0) taken as a boundary condition to solve the partial differential equation controlling the heat transfer. Temperature profiles obtained at elevated pressures were smoother at the center of the reactor and increased sharply near the wall, than profiles at atmospheric pressure. It could also be observed, that the radial temperature profiles in the center of the reactor using a monolith catalyst at elevated pressure were more even and smoother than those of pellets. Temperature profiles in fixed beds were found to be very sensitive to Ker and hw. In pressures between atmospheric and 10 bars, there was no change in the effective heat transport parameters (i.e. they are independent of pressure in this range). Both parameters were strongly affected by the pressure changes, above 10 bars. For the same Reynolds number (Ker) increased by 27% and 53% at 11 and 20 bars, respectively, in pellets catalyst. And they increased by factors of 2.3 and 4, when the pressure increased to the same pressures, in monolith catalyst. On the other hand, the effect of pressure on (hw) was completely the opposite, h,~ for pellets and monolith catalysts were found to be decreasing with increasing the pressure. Moreover, both coefficients increased with the Reynolds number at all applied pressures. This increase was higher for pellets than it for monoliths.展开更多
The three-dimensional damage constitutive relationship of coal is established and distribution law of the abutment pressure of the integrated coal beside the road-in packing for gob-side entry retaining in fully-mecha...The three-dimensional damage constitutive relationship of coal is established and distribution law of the abutment pressure of the integrated coal beside the road-in packing for gob-side entry retaining in fully-mechanized caving face under the effect of given deformation of the main roof is analyzed by the damage mechanics theory. And the relationship between distribution of the abutment pressure and thickness of coal seam is explored. The presented result is of great theoretical significance and practical value to the study on stability control of the surrounding rock of road-in packing for gob-side entry retaining in fully-mechanized caving face.展开更多
In order to produce the high quality optical aspheric lens,the shrinkage of lens should be strictly controlled during the injection process.Serials of experiments are done to find the factors that affect the lens shri...In order to produce the high quality optical aspheric lens,the shrinkage of lens should be strictly controlled during the injection process.Serials of experiments are done to find the factors that affect the lens shrinkage during the injection molding process.The study is focused on the effect of gate size,packing time and pressure on the shrinkage.The gate size decides the effective packing time.Only when the effective packing time is enough,the shrinkage size will be decreased along with the packing pressure increased.However the packing time is determined by the gate size.But big gate size is not easily to be cut and the cutting difficulty will cause the part quality problems.The experiments show that packing pressure not only determines the part shrinkage size and also affects the part shrinkage uniformity.When the packing pressure is more than a critical one,the effect of packing pressure on the shrinkage size becomes smaller.And the shrinkage uniformity is guaranteed.展开更多
文摘The effect of operating pressure on the radial heat transfer coefficients, in a non-adiabatic fixed packed bed was studied at atmospheric and higher pressures, The study was concerned with investigating the effect of the pressure on the radial thermal conductivity (K^r) and wall heat transfer coefficient (h~) for both pellets and monolith catalysts. The study included beds that were packed with pellets and monoliths, separately. The radial temperature distribution was measured at different beds heights and feed flow rates for both types of packing. Steady-state temperatures were measured using nine chromel-alumel thermocouples arranged on a stainless steel-cross. After temperatures were collected, the radial thermal conductivity and wall heat transfer coefficient were calculated using a two-dimensional pseudo-homogeneous model. The results showed that, the radial temperature profile at the entrance of the heating section was nearly even, and a constant temperature along the radius (0F/0r=0) taken as a boundary condition to solve the partial differential equation controlling the heat transfer. Temperature profiles obtained at elevated pressures were smoother at the center of the reactor and increased sharply near the wall, than profiles at atmospheric pressure. It could also be observed, that the radial temperature profiles in the center of the reactor using a monolith catalyst at elevated pressure were more even and smoother than those of pellets. Temperature profiles in fixed beds were found to be very sensitive to Ker and hw. In pressures between atmospheric and 10 bars, there was no change in the effective heat transport parameters (i.e. they are independent of pressure in this range). Both parameters were strongly affected by the pressure changes, above 10 bars. For the same Reynolds number (Ker) increased by 27% and 53% at 11 and 20 bars, respectively, in pellets catalyst. And they increased by factors of 2.3 and 4, when the pressure increased to the same pressures, in monolith catalyst. On the other hand, the effect of pressure on (hw) was completely the opposite, h,~ for pellets and monolith catalysts were found to be decreasing with increasing the pressure. Moreover, both coefficients increased with the Reynolds number at all applied pressures. This increase was higher for pellets than it for monoliths.
基金Supported by the National Science Foundation of China (50874042, 50674046)National Science Important Foundation (50634050)Hunan Science Foundation (06JJ50092)
文摘The three-dimensional damage constitutive relationship of coal is established and distribution law of the abutment pressure of the integrated coal beside the road-in packing for gob-side entry retaining in fully-mechanized caving face under the effect of given deformation of the main roof is analyzed by the damage mechanics theory. And the relationship between distribution of the abutment pressure and thickness of coal seam is explored. The presented result is of great theoretical significance and practical value to the study on stability control of the surrounding rock of road-in packing for gob-side entry retaining in fully-mechanized caving face.
文摘In order to produce the high quality optical aspheric lens,the shrinkage of lens should be strictly controlled during the injection process.Serials of experiments are done to find the factors that affect the lens shrinkage during the injection molding process.The study is focused on the effect of gate size,packing time and pressure on the shrinkage.The gate size decides the effective packing time.Only when the effective packing time is enough,the shrinkage size will be decreased along with the packing pressure increased.However the packing time is determined by the gate size.But big gate size is not easily to be cut and the cutting difficulty will cause the part quality problems.The experiments show that packing pressure not only determines the part shrinkage size and also affects the part shrinkage uniformity.When the packing pressure is more than a critical one,the effect of packing pressure on the shrinkage size becomes smaller.And the shrinkage uniformity is guaranteed.