To study the mechanism of ultrasonic vibration assisted forming,the static and vibration assisted compression tests of aluminum 1050 were carried out via a 25 kHz high-frequency ultrasonic vibration device.It is found...To study the mechanism of ultrasonic vibration assisted forming,the static and vibration assisted compression tests of aluminum 1050 were carried out via a 25 kHz high-frequency ultrasonic vibration device.It is found that vibration reduces the flow resistance and improves the surface topography.The force reduction level is proportional to the ultrasonic vibration amplitude.By using numerical simulation of static and vibration assisted compression tests,the deformation characteristics of material were investigated.Throughout the vibration,the friction between the materials and tools reduces.The stress superposition and friction effects are found to be two major reasons for reducing the force.However,the force reduction because of stress superposition and friction effects is still less than the actual force reduction from the tests,which suggests that softening effect may be one of the other reasons to reduce the force.展开更多
基金Project(51105250)supported by the National Natural Science Foundation of ChinaProject(P2015-13)supported by the State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology,China
文摘To study the mechanism of ultrasonic vibration assisted forming,the static and vibration assisted compression tests of aluminum 1050 were carried out via a 25 kHz high-frequency ultrasonic vibration device.It is found that vibration reduces the flow resistance and improves the surface topography.The force reduction level is proportional to the ultrasonic vibration amplitude.By using numerical simulation of static and vibration assisted compression tests,the deformation characteristics of material were investigated.Throughout the vibration,the friction between the materials and tools reduces.The stress superposition and friction effects are found to be two major reasons for reducing the force.However,the force reduction because of stress superposition and friction effects is still less than the actual force reduction from the tests,which suggests that softening effect may be one of the other reasons to reduce the force.