A fast explicit finite difference method (FEFDM),derived from the differential equations of one-dimensional steady pipe flow,was presented for calculation of wellhead injection pressure.Recalculation with a traditiona...A fast explicit finite difference method (FEFDM),derived from the differential equations of one-dimensional steady pipe flow,was presented for calculation of wellhead injection pressure.Recalculation with a traditional numerical method of the same equations corroborates well the reliability and rate of FEFDM.Moreover,a flow rate estimate method was developed for the project whose injection rate has not been clearly determined.A wellhead pressure regime determined by this method was successfully applied to the trial injection operations in Shihezi formation of Shenhua CCS Project,which is a good practice verification of FEFDM.At last,this method was used to evaluate the effect of friction and acceleration terms on the flow equation on the wellhead pressure.The result shows that for deep wellbore,the friction term can be omitted when flow rate is low and in a wide range of velocity the acceleration term can always be deleted.It is also shown that with flow rate increasing,the friction term can no longer be neglected.展开更多
We prove the global existence and stability of a wave structure containing a stationary Mach con- figuration, which occurs when an incident shock front hits a wall with a large incident angle. Our result shows that ti...We prove the global existence and stability of a wave structure containing a stationary Mach con- figuration, which occurs when an incident shock front hits a wall with a large incident angle. Our result shows that tile data of the upstream flow and the pressure at downstream part jointly determine the whole flow, as well a the wave structure. Particularly, we show that the height of the Mach stem depends not only on the data of upstream flow, but also on the pressure at downstream flow. The flow with the assigned wave structure is governed by a free boundary value problem for the Euler system. In the problem the location of the triple point, the shock fronts and the contact discontinuity are all unknown, they are finally determined together with the solution.展开更多
基金Project(Z110803)supported by the State Key Laboratory of Geomechanics and Geotechnical Engineering,ChinaProject(2008AA062303)supported by the National High Technology Research and Development Program of China
文摘A fast explicit finite difference method (FEFDM),derived from the differential equations of one-dimensional steady pipe flow,was presented for calculation of wellhead injection pressure.Recalculation with a traditional numerical method of the same equations corroborates well the reliability and rate of FEFDM.Moreover,a flow rate estimate method was developed for the project whose injection rate has not been clearly determined.A wellhead pressure regime determined by this method was successfully applied to the trial injection operations in Shihezi formation of Shenhua CCS Project,which is a good practice verification of FEFDM.At last,this method was used to evaluate the effect of friction and acceleration terms on the flow equation on the wellhead pressure.The result shows that for deep wellbore,the friction term can be omitted when flow rate is low and in a wide range of velocity the acceleration term can always be deleted.It is also shown that with flow rate increasing,the friction term can no longer be neglected.
基金supported by National Natural Science Foundation of China(Grant Nos.11031001 and 11101101)
文摘We prove the global existence and stability of a wave structure containing a stationary Mach con- figuration, which occurs when an incident shock front hits a wall with a large incident angle. Our result shows that tile data of the upstream flow and the pressure at downstream part jointly determine the whole flow, as well a the wave structure. Particularly, we show that the height of the Mach stem depends not only on the data of upstream flow, but also on the pressure at downstream flow. The flow with the assigned wave structure is governed by a free boundary value problem for the Euler system. In the problem the location of the triple point, the shock fronts and the contact discontinuity are all unknown, they are finally determined together with the solution.