We present a quantum measurement model where the meter is taken to be a squeezed reservoir. life realize decoherence in macroscopic limits using Bogoliubov transformation, and this kind of system-meter coupling has a ...We present a quantum measurement model where the meter is taken to be a squeezed reservoir. life realize decoherence in macroscopic limits using Bogoliubov transformation, and this kind of system-meter coupling has a dramatic influence on decoherence.展开更多
The effect of pressure on combustion and heat transfer is analyzed. The research is based on the basic combustion and heat transfer theorem. A correction for the heat calculation method for pressurized furnace is made...The effect of pressure on combustion and heat transfer is analyzed. The research is based on the basic combustion and heat transfer theorem. A correction for the heat calculation method for pressurized furnace is made on the basis of the normal pressure case. The correction takes the effect of pressurizing into account. The results show that the correction is reasonable and the method is applicable to combustion and heat transfer of the marine supercharged boiler.展开更多
基金the Key Subject Foundation for Atomic and Molecular Physics of Anhui Province under,安徽师范大学校科研和教改项目
文摘We present a quantum measurement model where the meter is taken to be a squeezed reservoir. life realize decoherence in macroscopic limits using Bogoliubov transformation, and this kind of system-meter coupling has a dramatic influence on decoherence.
文摘The effect of pressure on combustion and heat transfer is analyzed. The research is based on the basic combustion and heat transfer theorem. A correction for the heat calculation method for pressurized furnace is made on the basis of the normal pressure case. The correction takes the effect of pressurizing into account. The results show that the correction is reasonable and the method is applicable to combustion and heat transfer of the marine supercharged boiler.