The mathematical model of 4He quantum interferometer gyroscope is presented. The model includes the driven equation, the current equation and the position equation. Therefore, it can sufficiently describe the gyro- sc...The mathematical model of 4He quantum interferometer gyroscope is presented. The model includes the driven equation, the current equation and the position equation. Therefore, it can sufficiently describe the gyro- scope system. The driven equation shows the thermally driven gyroscope can work for a long time but the pres- sure driven one cannot. From the current equation, the superfluid currents passing through the weak link contain the AC currents which show the rotation flux, and other currents caused by drive. As shown in the position equa- tion, the displacement of diaphragm is the only detectable parameter in the gyroscope system. The model is tested by the simulations based on experimental parameters, and can be used to research performance of the gyroscope and analyse the gyroscope error.展开更多
The factors influencing on soil expansion are reviewed in the paper. A mechanics model to determine swelling potential of expansive soils is presented. The mechanics model is based on the softening of expansive soil f...The factors influencing on soil expansion are reviewed in the paper. A mechanics model to determine swelling potential of expansive soils is presented. The mechanics model is based on the softening of expansive soil following absorption of water. The constitutive relationships of the mechanics model include the relationship among swelling under free load, swelling under load, and vertical pressure, and the relationship of swelling under free loading and swelling pressure. A concept of additional compression modulus is introduced and the method determining the modulus is proposed. Finally, the predicted results of swelling potential using the mechanics model compare well with the measured data.展开更多
The pressure swing adsorption (PSA) models discussed here are divided into three categories: partialdifferential equation model, electrical analogue model and neural network model. The partial differential equationmod...The pressure swing adsorption (PSA) models discussed here are divided into three categories: partialdifferential equation model, electrical analogue model and neural network model. The partial differential equationmodel, including equilibrium and kinetic models, has provided an elementary viewpoint for PSA processes. Usingthe simplest equilibrium models, some influential factors, such as pressurization with product, incomplete purge,beds with dead volume and heat effects, are discussed respectively. With several approximate assumptions i.e.,concentration profile in adsorbent, 'frozen' column, symmetry and heat effects of bed wall, the more complexkinetic models can be simplified to a certain degree at the expense of a limited application. It has also been foundthat the electrical analogue model has great flexibility to handle more realistic PSA processes without any additionalhypothesis.展开更多
A three-dimensional mathematical model for the transferred-type argon arc was developed to describe arc force on the anode surface. The software ANSYS was employed to solve the model. The model includes a part of torc...A three-dimensional mathematical model for the transferred-type argon arc was developed to describe arc force on the anode surface. The software ANSYS was employed to solve the model. The model includes a part of torch and tungsten electrode to achieve more reasonable resuits. The arc temperature and flow fields were derived. And the influences of welding parameters on arc force were also studied. The simulated results show that arc pressure at the anode are dependent on the welding current, plasma gas flow rate and electrode neck-in, while not sensitive to arc length.展开更多
A mathematical model of the soil pressure system in shield tunneling was proposed to optimize soil pressure control in the soil chamber, based on the constitutive relationship between strain and stress. The desired pr...A mathematical model of the soil pressure system in shield tunneling was proposed to optimize soil pressure control in the soil chamber, based on the constitutive relationship between strain and stress. The desired pressure is determined by using the finite element method. A linear quadratic constant state tracking problem was considered over an infinite time interval. The optimal control law was derived by differentiating the Hamilton function with respect to system input. In order to verify the effectiveness of the proposed mathematical model and optimal control law, an experimental study on the pressure control of the soil chamber in shield tunneling was conducted in a laboratory. The experiment results show that soil pressure in the soil chamber in shield tunneling can be accurately controlled.展开更多
Based on the kinetic and thermodynamic equations, a comprehensive mathematical model for the con- tinuous esterification process of polyester polyols was developed, which was carried out in an innovational bub- bling ...Based on the kinetic and thermodynamic equations, a comprehensive mathematical model for the con- tinuous esterification process of polyester polyols was developed, which was carried out in an innovational bub- bling reactive distillation tower (BRDT) at atmospheric pressure. In this new type of reactor, direct esterification between ethylene glycol and adipic acid was accomplished efficiently and rapidly. A bench BRDT with the height of 2 m was applied for the esteriflcation process of l^oly (ethylene adlpate) (P'EA). In the continuous operation, Hn- ear oligomers were discharged from the bottom of the column, while water passed a few column trays and a pack- ing section as a condensation byproduct. The influence of major operating conditions on reactor performance was also simulated. Simulation results were in good agreement with experimental data, providing a strategy for devel- oping and optimizing this process.展开更多
Based on the stress-algebraic model, the turbulent buoyant jet with variable density was studied by the relation between density and concentration. A simple expression for buoyancy coefficient was proposed. The govern...Based on the stress-algebraic model, the turbulent buoyant jet with variable density was studied by the relation between density and concentration. A simple expression for buoyancy coefficient was proposed. The governing equations of turbulent buoyant jet with variable density were closed by introducing the expression of β and the relation between density and concentration. Numerical results for the jet axis with density difference agree well with experimental ones. By finite volume method, the 2 - D vertical jet's flow field with different jet angles was studied. The analysis of the relation among the vortex center, the position of separation point and jet angles shows that the circumfluenee field is the largest when the jet angle is 90°. The area turbulent kinetic energy ka is proposed and the relationship between mixing intensity and jet angles is analyzed based on it. Results show that the jet angle of is the optimum condition for jet water mixing with environment water;and the reduced rate of difference between the centerline density of jet and the density of ambient water is the largest at the jet angle of 90°.展开更多
Presented the methods to obtain the cogging force of permanent magnet linear synchronous motors(PMLSMs), analyzed the characteristics of the cogging force, and provided a basis for reducing the effect of the cogging f...Presented the methods to obtain the cogging force of permanent magnet linear synchronous motors(PMLSMs), analyzed the characteristics of the cogging force, and provided a basis for reducing the effect of the cogging force. 2-dimensional finite element method(2D FEM) was used to solve the whole motor when its mover was at dif- ferent position, so that the relation was derived between the cogging force and the mover position. The analysis results show that the cogging force between the two ends of the primary iron-core and the secondary permanent magnets (PMs) is sinusoidal function of the mover position under certain conditions only. Two proposed methods, namely direct and indirect methods, are applied to calculate the cogging force between the primary iron-core teeth and the secondary PMs. The agreement of the two methods is validated.展开更多
A mathematical model based on an electrorheological (ER) shock absorber with the mixed-mode is presented. Its application to the parametric design of an electrorheological fluid shock absorber with the simulation calc...A mathematical model based on an electrorheological (ER) shock absorber with the mixed-mode is presented. Its application to the parametric design of an electrorheological fluid shock absorber with the simulation calculation performed by program MATLAB demonstrates that the model can predict the behavior of ER shock absorbers satisfactorily, shorten the design period of an electrorheological shock absorber, and reduce the cost in the prototype manufacturing. The strength analysis based on a three-dimensional finite element model for the electrorheological shock absorber confirm that the structure design of the ER shock absorber is reasonable, and the stress distribution is uniform.展开更多
Before any rock engineering project,mechanical parameters of rocks such as uniaxial compressive strength and young modulus of intact rock get measured using laboratory or in-situ tests,but in some situations preparing...Before any rock engineering project,mechanical parameters of rocks such as uniaxial compressive strength and young modulus of intact rock get measured using laboratory or in-situ tests,but in some situations preparing the required specimens is impossible.By this time,several models have been established to evaluate UCS and E from rock substantial properties.Artificial neural networks are powerful tools which are employed to establish predictive models and results have shown the priority of this technique compared to classic statistical techniques.In this paper,ANN and multivariate statistical models considering rock textural characteristics have been established to estimate UCS of rock and to validate the responses of the established models,they were compared with laboratory results.For this purpose a data set for 44 samples of sandstone was prepared and for each sample some textural characteristics such as void,mineral content and grain size as well as UCS were determined.To select the best predictors as inputs of the UCS models,this data set was subjected to statistical analyses comprising basic descriptive statistics,bivariate correlation,curve fitting and principal component analyses.Results of such analyses have shown that void,ferroan calcitic cement,argillaceous cement and mica percentage have the most effect on USC.Two predictive models for UCS were developed using these variables by ANN and linear multivariate regression.Results have shown that by using simple textural characteristics such as mineral content,cement type and void,strength of studied sandstone can be estimated with acceptable accuracy.ANN and multivariate statistical UCS models,revealed responses with 0.87 and 0.76 regressions,respectively which proves higher potential of ANN model for predicting UCS compared to classic statistical models.展开更多
Mathematical model is developed for prediction of physiological changes in man during work in hot environment taking into consideration intensity of work, clothing and environment. To evaluate human functional state t...Mathematical model is developed for prediction of physiological changes in man during work in hot environment taking into consideration intensity of work, clothing and environment. To evaluate human functional state the heat stress index was calculated. Modeling researches made the conclusion that the main risk factor during work in hot environment is water losses that happens through thermoregulatory sweat evaporation. Modeling showed that in humid environment man wearing protective clothing has short time to work as water losses became more than 2% of human weight that means body dehydration. Preliminary model prediction can be used as preventive method to avoid hazard of human health.展开更多
In the study and the research of the troposphere, the knowledge about its pressure variation on the height is necessary and important. Of course, exist the sounding to make this work, but not always it is possible to ...In the study and the research of the troposphere, the knowledge about its pressure variation on the height is necessary and important. Of course, exist the sounding to make this work, but not always it is possible to access to sounding data when is necessary, so then, it is important to has others alternatives methods in order to replace it. The troposphere is basically a fluid, susceptible to be studied under the fluid mechanics and thermodynamics of the ideals gases without loss generalities. So, it is possible to study of the atmospheric air like as a continuous perfect gas. These facts are important questions to study the troposphere under the laws and beginning Physics, using its respective equations, in order to get a theoretical model to simulate the behavior of its thermodynamics variables and parameters. Working on this line, it was developed a model in order to simulate the tropospheric pressure variation on the height from its measure on surface data.展开更多
It is important to study the pressure distribution on the blade and in the adjacent area while searching the power augmentation theory with adding a tip vane to the wind turbine. This paper shows the CFD simulation re...It is important to study the pressure distribution on the blade and in the adjacent area while searching the power augmentation theory with adding a tip vane to the wind turbine. This paper shows the CFD simulation relationship of the pressure distribution on the rotor blade and in the adjacent area, after calculating the pressure of the different chordwise and spanwise point on the blade with the tip vane-V(8.8×8) and without the tip vane under tip speed ratio λ 4.5. Combining the isobaric section figure in certain location, it can be seen that the tip vane improve the pressure difference between pressure and suction surface. The most influenced zone is found and these can further display the power augmentation theory of the wind turbine using the tip vane. The simulation calculation was based on N-S equations. 3-D, steady, implicit solver was chosen. Turbulence model was k-ω SST. Discretization scheme is SECOND ORDER UPWIND. Pressure-velocity coupling was a typical SIMPLE scheme. In the whole grid system, two-divided grid formation was adopted, that is, inner region and outer region. Inner region including rectangular solid blade and neighboring, outer region is semi-cylinder. There were together 720,000 nodes with tetra-prism unstructured mesh.展开更多
By the mathematic models of flexible hinge,the accurate relationship between the phase-shifting and pressure acting on the hinge is deduced and verified by experimental results.Through the optimization of the geometri...By the mathematic models of flexible hinge,the accurate relationship between the phase-shifting and pressure acting on the hinge is deduced and verified by experimental results.Through the optimization of the geometric parameter of flexible hinge,a phase-shifting generator is developed to determine the length of an object precisely by interferometry.The experiments show that the triple phase-shifting produced using this generator is up to 1 m.With this generator,an example for the application in length measurement is introduced.The result shows the length uncertainty is 0.5 nm when the temperature uncertainty is limited in 2 mK.This paper provides a novel technique to measure the dimension of an object,especially to the diameter of a silicon sphere for Avogadro constant project.展开更多
The vaned-diffuser usually brings compressor instability problems under the small flow rate, for instance the spike-type rotating stall phenomenon which restricts the operation range and may cause the trouble of blade...The vaned-diffuser usually brings compressor instability problems under the small flow rate, for instance the spike-type rotating stall phenomenon which restricts the operation range and may cause the trouble of blade fatigue. Since it is difficult to mathematically predict the spike-type stall for its randomness, finding out a practical method to warning this stall precursor appears to be meaningful. The paper explains the relationship between the spike-type precursor and the blade passing irregularity coefficient to analyze whether this coefficient is appropriate for the spike-stall warning inside a centrifugal compressor with the vaned-diffuser. The advanced wireless measurements were conducted on a 1.5 stages test centrifugal compressor to capture the unsteady behavior progressing from the design to stall inception within the region between the impeller trailing edge(TE) and diffuser leading edge(LE). The circumferential distribution of the blade passing irregularity has been quantitatively revealed.The steep increase of the blade passing irregularity at some "special locations", which is responsible for the onset of the spiketype precursor, is highlighted. Also, to further understand the spike precursor inside the diffuser passage corresponding to the circumferential "special location" with maximum irregularity, the high-response transient measurement within this passage is presented. With the help of full-annulus computational fluid dynamics(CFD) simulation and the mathematical model, it is proved that the blade passing irregularity precisely reflects the flow characteristics during the spike precursor, which presents the guidance for this stall warning method.展开更多
Steam pipelines applied in power units operate at high pressures and temperatures.In addition,to stress from the pipeline pressure also arise high thermal stresses in transient states such as start-up,shutdown or a lo...Steam pipelines applied in power units operate at high pressures and temperatures.In addition,to stress from the pipeline pressure also arise high thermal stresses in transient states such as start-up,shutdown or a load change of the power unit.Time-varying stresses are often the cause of the occurrence of fatigue cracks since the plastic deformations appear at the stress concentration regions.To determine the transient temperature of the steam along the steam flow path and axisymmetric temperature distribution in the pipeline wall,a numerical model of pipeline heating was proposed.To determine the transient temperature of the steam and pipeline wall the finite volume method(FVM) was used Writing the energy conservation equations for control areas around all the nodes gives a system of ordinary differential equations with respect to time.The system of ordinary differential equations of the first order was solved by the Runge-Kutta method of the fourth order to give the time-temperature changes at the nodes lying in the area of the wall and steam.The steam pressure distribution along pipeline was determined from the solution of the momentum conservation equation.Based on the calculated temperature distribution,thermal stresses were determined.The friction factor was calculated using the correlations of Churchill and Haaland,which were proposed for pipes with a rough inner surface.To assess the accuracy of the proposed model,numerical calculations were also performed for the thin-walled pipe,and the results were compared to the exact analytical solution.Comparison of the results shows that the accuracy of the proposed model of pipeline heating is very satisfactory.The paper presents examples of the determination of the transient temperature of the steam and the wall.展开更多
This study describes ciliary motion on the transport of fluids in human body with heat transfer. The mathematical model of the flow of a Jeffrey fluid in a tube of finite length is considered due to metachronal wave o...This study describes ciliary motion on the transport of fluids in human body with heat transfer. The mathematical model of the flow of a Jeffrey fluid in a tube of finite length is considered due to metachronal wave of cilia motion. Flow equations have been modeled and simplified using similarity variables. Exact solutions of the formulated problem have been obtained for velocity, temperature and pressure gradient and graphs for velocity, pressure rise pressure gradient and temperature profile have been plotted and studied for different values of specific physical parameters. Trapping phenomena and isotherms are presented at the end of the paper.展开更多
基金Supported by the National Natural Science Foundation of China(61074162)the Ph.D.Program Foundation of Ministry of Education of China(200802870011)~~
文摘The mathematical model of 4He quantum interferometer gyroscope is presented. The model includes the driven equation, the current equation and the position equation. Therefore, it can sufficiently describe the gyro- scope system. The driven equation shows the thermally driven gyroscope can work for a long time but the pres- sure driven one cannot. From the current equation, the superfluid currents passing through the weak link contain the AC currents which show the rotation flux, and other currents caused by drive. As shown in the position equa- tion, the displacement of diaphragm is the only detectable parameter in the gyroscope system. The model is tested by the simulations based on experimental parameters, and can be used to research performance of the gyroscope and analyse the gyroscope error.
文摘The factors influencing on soil expansion are reviewed in the paper. A mechanics model to determine swelling potential of expansive soils is presented. The mechanics model is based on the softening of expansive soil following absorption of water. The constitutive relationships of the mechanics model include the relationship among swelling under free load, swelling under load, and vertical pressure, and the relationship of swelling under free loading and swelling pressure. A concept of additional compression modulus is introduced and the method determining the modulus is proposed. Finally, the predicted results of swelling potential using the mechanics model compare well with the measured data.
基金Supported by the National Natural Science Foundation of China (No. 29876011).
文摘The pressure swing adsorption (PSA) models discussed here are divided into three categories: partialdifferential equation model, electrical analogue model and neural network model. The partial differential equationmodel, including equilibrium and kinetic models, has provided an elementary viewpoint for PSA processes. Usingthe simplest equilibrium models, some influential factors, such as pressurization with product, incomplete purge,beds with dead volume and heat effects, are discussed respectively. With several approximate assumptions i.e.,concentration profile in adsorbent, 'frozen' column, symmetry and heat effects of bed wall, the more complexkinetic models can be simplified to a certain degree at the expense of a limited application. It has also been foundthat the electrical analogue model has great flexibility to handle more realistic PSA processes without any additionalhypothesis.
基金National Natural Science Foundation of China(No.50275106)
文摘A three-dimensional mathematical model for the transferred-type argon arc was developed to describe arc force on the anode surface. The software ANSYS was employed to solve the model. The model includes a part of torch and tungsten electrode to achieve more reasonable resuits. The arc temperature and flow fields were derived. And the influences of welding parameters on arc force were also studied. The simulated results show that arc pressure at the anode are dependent on the welding current, plasma gas flow rate and electrode neck-in, while not sensitive to arc length.
基金Supported by the National Basic Research Project (2007CB714006, 90815023) the National Natural Science Foundation of China (GZ0818, GZ1107)
文摘A mathematical model of the soil pressure system in shield tunneling was proposed to optimize soil pressure control in the soil chamber, based on the constitutive relationship between strain and stress. The desired pressure is determined by using the finite element method. A linear quadratic constant state tracking problem was considered over an infinite time interval. The optimal control law was derived by differentiating the Hamilton function with respect to system input. In order to verify the effectiveness of the proposed mathematical model and optimal control law, an experimental study on the pressure control of the soil chamber in shield tunneling was conducted in a laboratory. The experiment results show that soil pressure in the soil chamber in shield tunneling can be accurately controlled.
基金Supported by the National Natural Science Foundation of China (21176070).
文摘Based on the kinetic and thermodynamic equations, a comprehensive mathematical model for the con- tinuous esterification process of polyester polyols was developed, which was carried out in an innovational bub- bling reactive distillation tower (BRDT) at atmospheric pressure. In this new type of reactor, direct esterification between ethylene glycol and adipic acid was accomplished efficiently and rapidly. A bench BRDT with the height of 2 m was applied for the esteriflcation process of l^oly (ethylene adlpate) (P'EA). In the continuous operation, Hn- ear oligomers were discharged from the bottom of the column, while water passed a few column trays and a pack- ing section as a condensation byproduct. The influence of major operating conditions on reactor performance was also simulated. Simulation results were in good agreement with experimental data, providing a strategy for devel- oping and optimizing this process.
基金the Natural Science Foundation of Liaoning Province(Grant No.20032115)
文摘Based on the stress-algebraic model, the turbulent buoyant jet with variable density was studied by the relation between density and concentration. A simple expression for buoyancy coefficient was proposed. The governing equations of turbulent buoyant jet with variable density were closed by introducing the expression of β and the relation between density and concentration. Numerical results for the jet axis with density difference agree well with experimental ones. By finite volume method, the 2 - D vertical jet's flow field with different jet angles was studied. The analysis of the relation among the vortex center, the position of separation point and jet angles shows that the circumfluenee field is the largest when the jet angle is 90°. The area turbulent kinetic energy ka is proposed and the relationship between mixing intensity and jet angles is analyzed based on it. Results show that the jet angle of is the optimum condition for jet water mixing with environment water;and the reduced rate of difference between the centerline density of jet and the density of ambient water is the largest at the jet angle of 90°.
基金Supported by the National Natural Science Foundation of China (60474043)
文摘Presented the methods to obtain the cogging force of permanent magnet linear synchronous motors(PMLSMs), analyzed the characteristics of the cogging force, and provided a basis for reducing the effect of the cogging force. 2-dimensional finite element method(2D FEM) was used to solve the whole motor when its mover was at dif- ferent position, so that the relation was derived between the cogging force and the mover position. The analysis results show that the cogging force between the two ends of the primary iron-core and the secondary permanent magnets (PMs) is sinusoidal function of the mover position under certain conditions only. Two proposed methods, namely direct and indirect methods, are applied to calculate the cogging force between the primary iron-core teeth and the secondary PMs. The agreement of the two methods is validated.
基金the National Natural Science Foundation of China (No: 51035030) and the Applied and Basic Research Foundation of Chongqing University
文摘A mathematical model based on an electrorheological (ER) shock absorber with the mixed-mode is presented. Its application to the parametric design of an electrorheological fluid shock absorber with the simulation calculation performed by program MATLAB demonstrates that the model can predict the behavior of ER shock absorbers satisfactorily, shorten the design period of an electrorheological shock absorber, and reduce the cost in the prototype manufacturing. The strength analysis based on a three-dimensional finite element model for the electrorheological shock absorber confirm that the structure design of the ER shock absorber is reasonable, and the stress distribution is uniform.
文摘Before any rock engineering project,mechanical parameters of rocks such as uniaxial compressive strength and young modulus of intact rock get measured using laboratory or in-situ tests,but in some situations preparing the required specimens is impossible.By this time,several models have been established to evaluate UCS and E from rock substantial properties.Artificial neural networks are powerful tools which are employed to establish predictive models and results have shown the priority of this technique compared to classic statistical techniques.In this paper,ANN and multivariate statistical models considering rock textural characteristics have been established to estimate UCS of rock and to validate the responses of the established models,they were compared with laboratory results.For this purpose a data set for 44 samples of sandstone was prepared and for each sample some textural characteristics such as void,mineral content and grain size as well as UCS were determined.To select the best predictors as inputs of the UCS models,this data set was subjected to statistical analyses comprising basic descriptive statistics,bivariate correlation,curve fitting and principal component analyses.Results of such analyses have shown that void,ferroan calcitic cement,argillaceous cement and mica percentage have the most effect on USC.Two predictive models for UCS were developed using these variables by ANN and linear multivariate regression.Results have shown that by using simple textural characteristics such as mineral content,cement type and void,strength of studied sandstone can be estimated with acceptable accuracy.ANN and multivariate statistical UCS models,revealed responses with 0.87 and 0.76 regressions,respectively which proves higher potential of ANN model for predicting UCS compared to classic statistical models.
文摘Mathematical model is developed for prediction of physiological changes in man during work in hot environment taking into consideration intensity of work, clothing and environment. To evaluate human functional state the heat stress index was calculated. Modeling researches made the conclusion that the main risk factor during work in hot environment is water losses that happens through thermoregulatory sweat evaporation. Modeling showed that in humid environment man wearing protective clothing has short time to work as water losses became more than 2% of human weight that means body dehydration. Preliminary model prediction can be used as preventive method to avoid hazard of human health.
文摘In the study and the research of the troposphere, the knowledge about its pressure variation on the height is necessary and important. Of course, exist the sounding to make this work, but not always it is possible to access to sounding data when is necessary, so then, it is important to has others alternatives methods in order to replace it. The troposphere is basically a fluid, susceptible to be studied under the fluid mechanics and thermodynamics of the ideals gases without loss generalities. So, it is possible to study of the atmospheric air like as a continuous perfect gas. These facts are important questions to study the troposphere under the laws and beginning Physics, using its respective equations, in order to get a theoretical model to simulate the behavior of its thermodynamics variables and parameters. Working on this line, it was developed a model in order to simulate the tropospheric pressure variation on the height from its measure on surface data.
基金Project 50566001 supported by NSFCProject 200308020207 supported by Inner Mongolia Autono- mous Region Natural Science Foundation of China.
文摘It is important to study the pressure distribution on the blade and in the adjacent area while searching the power augmentation theory with adding a tip vane to the wind turbine. This paper shows the CFD simulation relationship of the pressure distribution on the rotor blade and in the adjacent area, after calculating the pressure of the different chordwise and spanwise point on the blade with the tip vane-V(8.8×8) and without the tip vane under tip speed ratio λ 4.5. Combining the isobaric section figure in certain location, it can be seen that the tip vane improve the pressure difference between pressure and suction surface. The most influenced zone is found and these can further display the power augmentation theory of the wind turbine using the tip vane. The simulation calculation was based on N-S equations. 3-D, steady, implicit solver was chosen. Turbulence model was k-ω SST. Discretization scheme is SECOND ORDER UPWIND. Pressure-velocity coupling was a typical SIMPLE scheme. In the whole grid system, two-divided grid formation was adopted, that is, inner region and outer region. Inner region including rectangular solid blade and neighboring, outer region is semi-cylinder. There were together 720,000 nodes with tetra-prism unstructured mesh.
基金supported by the National Key Technology R&D Program of China (Grant No. 2006BAF06B06)
文摘By the mathematic models of flexible hinge,the accurate relationship between the phase-shifting and pressure acting on the hinge is deduced and verified by experimental results.Through the optimization of the geometric parameter of flexible hinge,a phase-shifting generator is developed to determine the length of an object precisely by interferometry.The experiments show that the triple phase-shifting produced using this generator is up to 1 m.With this generator,an example for the application in length measurement is introduced.The result shows the length uncertainty is 0.5 nm when the temperature uncertainty is limited in 2 mK.This paper provides a novel technique to measure the dimension of an object,especially to the diameter of a silicon sphere for Avogadro constant project.
基金supported by the National Natural Science Foundation of China(Grant Nos.51770512 and 51576153)
文摘The vaned-diffuser usually brings compressor instability problems under the small flow rate, for instance the spike-type rotating stall phenomenon which restricts the operation range and may cause the trouble of blade fatigue. Since it is difficult to mathematically predict the spike-type stall for its randomness, finding out a practical method to warning this stall precursor appears to be meaningful. The paper explains the relationship between the spike-type precursor and the blade passing irregularity coefficient to analyze whether this coefficient is appropriate for the spike-stall warning inside a centrifugal compressor with the vaned-diffuser. The advanced wireless measurements were conducted on a 1.5 stages test centrifugal compressor to capture the unsteady behavior progressing from the design to stall inception within the region between the impeller trailing edge(TE) and diffuser leading edge(LE). The circumferential distribution of the blade passing irregularity has been quantitatively revealed.The steep increase of the blade passing irregularity at some "special locations", which is responsible for the onset of the spiketype precursor, is highlighted. Also, to further understand the spike precursor inside the diffuser passage corresponding to the circumferential "special location" with maximum irregularity, the high-response transient measurement within this passage is presented. With the help of full-annulus computational fluid dynamics(CFD) simulation and the mathematical model, it is proved that the blade passing irregularity precisely reflects the flow characteristics during the spike precursor, which presents the guidance for this stall warning method.
文摘Steam pipelines applied in power units operate at high pressures and temperatures.In addition,to stress from the pipeline pressure also arise high thermal stresses in transient states such as start-up,shutdown or a load change of the power unit.Time-varying stresses are often the cause of the occurrence of fatigue cracks since the plastic deformations appear at the stress concentration regions.To determine the transient temperature of the steam along the steam flow path and axisymmetric temperature distribution in the pipeline wall,a numerical model of pipeline heating was proposed.To determine the transient temperature of the steam and pipeline wall the finite volume method(FVM) was used Writing the energy conservation equations for control areas around all the nodes gives a system of ordinary differential equations with respect to time.The system of ordinary differential equations of the first order was solved by the Runge-Kutta method of the fourth order to give the time-temperature changes at the nodes lying in the area of the wall and steam.The steam pressure distribution along pipeline was determined from the solution of the momentum conservation equation.Based on the calculated temperature distribution,thermal stresses were determined.The friction factor was calculated using the correlations of Churchill and Haaland,which were proposed for pipes with a rough inner surface.To assess the accuracy of the proposed model,numerical calculations were also performed for the thin-walled pipe,and the results were compared to the exact analytical solution.Comparison of the results shows that the accuracy of the proposed model of pipeline heating is very satisfactory.The paper presents examples of the determination of the transient temperature of the steam and the wall.
文摘This study describes ciliary motion on the transport of fluids in human body with heat transfer. The mathematical model of the flow of a Jeffrey fluid in a tube of finite length is considered due to metachronal wave of cilia motion. Flow equations have been modeled and simplified using similarity variables. Exact solutions of the formulated problem have been obtained for velocity, temperature and pressure gradient and graphs for velocity, pressure rise pressure gradient and temperature profile have been plotted and studied for different values of specific physical parameters. Trapping phenomena and isotherms are presented at the end of the paper.