Objective: To investigate the effects of carvedilol (CVD) on transmural dispersion of repolarization(TDR) and arrhythmia in pressure over-load rabbits. Methods: Left ventricular hypertrophied(LVH) rabbit model...Objective: To investigate the effects of carvedilol (CVD) on transmural dispersion of repolarization(TDR) and arrhythmia in pressure over-load rabbits. Methods: Left ventricular hypertrophied(LVH) rabbit models were established by pressure over-load; All animal models were assigned into CVD group or LVH group randomly. The action potentials of endocardium, cpicardium and transmural ECG of arterially perfused left ventricular preparations were recorded concurrently. Action potential duration (APD), TDR, ventricular arrhythmia and ultrasonic parameters, ratio of LVM to body weight (LVMI) were compared correspondingly. The stable plasma concentration of carvedilol in CVD group was detected by HPLC. APD, TDR and arrhythmia of LVH models were compared just preor post-perfusion with stable concentration of CVD. Results: In Contrast with values in LVH group, LVEFof CVD group were significantly elevated while the LVMI was remarkably reduced, TDRs were significantly shortened, and ratio of ventricular arrhythmia was lowered remarkably. No significant difference of APD, TDR and ratio of arrhythmia was found preor post-perfusion at stable plasma concentration of CVD. Conclusion: CVD can ameliorate the structure and function of pressure over-load ventricles; CVD contributes to the improvement of ventricular arrhythmia associated with its long-term effect on APD,TDR shortening ,whereas has nothing to do with its transient function on ionic channel blockade展开更多
In order to provide some theoretical guideline for the structure design of the new type externally pressurized spherical air bearings,the static characteristics and the factors affecting the static characteristics of ...In order to provide some theoretical guideline for the structure design of the new type externally pressurized spherical air bearings,the static characteristics and the factors affecting the static characteristics of the air bearings were analyzed.A finite volume method was adopted to discretize the three-dimensional steady-state compressible Navier-Stokes equations,and a modified SIMPLE algorithm for compressible fluid was applied to solve the discretized governing equations.The pressure field and velocity field of the air bearings were obtained,and the factors and rules affecting the static characteristics were analyzed.The results show that the pressure of near air intakes can reach above 80% of air supply pressure,and there is a pressure steep fall around the air intakes.When the film thickness is greater than 20 μm,the bearing capacity rapidly decreases as film thickness increases.As the air supply pressure increases from 0.2 to 0.6 MPa,the maximum static stiffness increases by more than three times.The calculation method proposed well fits the general principle,which can be extended to the characteristic analysis of other air bearings.展开更多
With the development of high-speed and heavy-haul railway in China, problems like insufficient thickness of ballast bed and overlarge track stiffness are obvious. Ballast may break into small particles and their conta...With the development of high-speed and heavy-haul railway in China, problems like insufficient thickness of ballast bed and overlarge track stiffness are obvious. Ballast may break into small particles and their contact status will deteriorate under cyclic loading, resulting in ballast degradation. Discrete element method(DEM) was used to research improved performance of ballast bed using elastic sleeper. Clusters were generated by bonding spheres to model real ballasts, while broken bonds were utilized to distinguish breakage. Two kinds of ballast beds with elastic sleeper and conventional sleeper were established, respectively. After applying cyclic loading to the models, differences of mechanical properties between two models were analyzed by contrasting their dynamic behavior indexes, such as particle contact force, sleeper settlement, vibration velocity and acceleration, breakage characteristic. The results illustrate that compared with conventional sleeper, elastic sleeper increases sleeper settlement, while reduces ballast vibration and contact force between particles, which could depress ballast breakage.展开更多
Hydraulic fracture is one of the key methods in well stimulation to increase production of oil and gas.Crack Opening Displacement(COD) is of great importance in this method since it is in direct relation with permeabi...Hydraulic fracture is one of the key methods in well stimulation to increase production of oil and gas.Crack Opening Displacement(COD) is of great importance in this method since it is in direct relation with permeability and production rate.In this paper COD is measured by a distinct element model which has been validated by an exact solution.A comprehensive study has been performed on confining pressure effect on COD which is neglected in the analytical solution.Numerical results showed that confining pressure considerably affects COD.A multi-parameter regression(considering effect of confining pressure,rock mass properties and fluid pressure) was performed on numerical results which resulted in an equation.The proposed equation considers the effect of confining pressure and its results are in good agreement with numerical results.展开更多
According to the previous experimental works on the low solidity circular cascade diffuser (LSD), a pressure recovery of a centrifugal blower was improved by the LSD significantly in a wide range of flow rate, and the...According to the previous experimental works on the low solidity circular cascade diffuser (LSD), a pressure recovery of a centrifugal blower was improved by the LSD significantly in a wide range of flow rate, and the pres-sure recovery was improved further by the LSD with a tandem cascade in comparison with the LSD with a sin-gle-row cascade. In the present study, the flow behavior in the LSD with the tandem cascade has been analyzed numerically by using the commercial CFD code of ANSYS-CFX12. It was shown clearly that the higher pressure recovery was achieved by applying the LSD with the tandem cascade, and the high pressure recovery is based on the high pressure rise in the vaneless space upstream of the LSD and the high blade loading of the front blade of the LSD. The high pressure recovery in the LSD could be achieved by controlling the flow separation on the suc-tion surface of the front blade and also on that of the rear blade due to formation of the favorable secondary flow and due to increase in mass flow passing through the slit section between the front and rear blades.展开更多
文摘Objective: To investigate the effects of carvedilol (CVD) on transmural dispersion of repolarization(TDR) and arrhythmia in pressure over-load rabbits. Methods: Left ventricular hypertrophied(LVH) rabbit models were established by pressure over-load; All animal models were assigned into CVD group or LVH group randomly. The action potentials of endocardium, cpicardium and transmural ECG of arterially perfused left ventricular preparations were recorded concurrently. Action potential duration (APD), TDR, ventricular arrhythmia and ultrasonic parameters, ratio of LVM to body weight (LVMI) were compared correspondingly. The stable plasma concentration of carvedilol in CVD group was detected by HPLC. APD, TDR and arrhythmia of LVH models were compared just preor post-perfusion with stable concentration of CVD. Results: In Contrast with values in LVH group, LVEFof CVD group were significantly elevated while the LVMI was remarkably reduced, TDRs were significantly shortened, and ratio of ventricular arrhythmia was lowered remarkably. No significant difference of APD, TDR and ratio of arrhythmia was found preor post-perfusion at stable plasma concentration of CVD. Conclusion: CVD can ameliorate the structure and function of pressure over-load ventricles; CVD contributes to the improvement of ventricular arrhythmia associated with its long-term effect on APD,TDR shortening ,whereas has nothing to do with its transient function on ionic channel blockade
基金Project(2002AA742049) supported by the National High Technology Research and Development Program of China
文摘In order to provide some theoretical guideline for the structure design of the new type externally pressurized spherical air bearings,the static characteristics and the factors affecting the static characteristics of the air bearings were analyzed.A finite volume method was adopted to discretize the three-dimensional steady-state compressible Navier-Stokes equations,and a modified SIMPLE algorithm for compressible fluid was applied to solve the discretized governing equations.The pressure field and velocity field of the air bearings were obtained,and the factors and rules affecting the static characteristics were analyzed.The results show that the pressure of near air intakes can reach above 80% of air supply pressure,and there is a pressure steep fall around the air intakes.When the film thickness is greater than 20 μm,the bearing capacity rapidly decreases as film thickness increases.As the air supply pressure increases from 0.2 to 0.6 MPa,the maximum static stiffness increases by more than three times.The calculation method proposed well fits the general principle,which can be extended to the characteristic analysis of other air bearings.
基金Project(U1234211)supported by the National Natural Science Foundation of ChinaProject(2013G009-B)supported by China Railway Corporation
文摘With the development of high-speed and heavy-haul railway in China, problems like insufficient thickness of ballast bed and overlarge track stiffness are obvious. Ballast may break into small particles and their contact status will deteriorate under cyclic loading, resulting in ballast degradation. Discrete element method(DEM) was used to research improved performance of ballast bed using elastic sleeper. Clusters were generated by bonding spheres to model real ballasts, while broken bonds were utilized to distinguish breakage. Two kinds of ballast beds with elastic sleeper and conventional sleeper were established, respectively. After applying cyclic loading to the models, differences of mechanical properties between two models were analyzed by contrasting their dynamic behavior indexes, such as particle contact force, sleeper settlement, vibration velocity and acceleration, breakage characteristic. The results illustrate that compared with conventional sleeper, elastic sleeper increases sleeper settlement, while reduces ballast vibration and contact force between particles, which could depress ballast breakage.
文摘Hydraulic fracture is one of the key methods in well stimulation to increase production of oil and gas.Crack Opening Displacement(COD) is of great importance in this method since it is in direct relation with permeability and production rate.In this paper COD is measured by a distinct element model which has been validated by an exact solution.A comprehensive study has been performed on confining pressure effect on COD which is neglected in the analytical solution.Numerical results showed that confining pressure considerably affects COD.A multi-parameter regression(considering effect of confining pressure,rock mass properties and fluid pressure) was performed on numerical results which resulted in an equation.The proposed equation considers the effect of confining pressure and its results are in good agreement with numerical results.
文摘According to the previous experimental works on the low solidity circular cascade diffuser (LSD), a pressure recovery of a centrifugal blower was improved by the LSD significantly in a wide range of flow rate, and the pres-sure recovery was improved further by the LSD with a tandem cascade in comparison with the LSD with a sin-gle-row cascade. In the present study, the flow behavior in the LSD with the tandem cascade has been analyzed numerically by using the commercial CFD code of ANSYS-CFX12. It was shown clearly that the higher pressure recovery was achieved by applying the LSD with the tandem cascade, and the high pressure recovery is based on the high pressure rise in the vaneless space upstream of the LSD and the high blade loading of the front blade of the LSD. The high pressure recovery in the LSD could be achieved by controlling the flow separation on the suc-tion surface of the front blade and also on that of the rear blade due to formation of the favorable secondary flow and due to increase in mass flow passing through the slit section between the front and rear blades.