In recent years, the sustainable development of automatic manual transmissions (AMTs) control in vehicles is conspicuous. The control applications have grown fast and steadily due to the tremendous progress in power e...In recent years, the sustainable development of automatic manual transmissions (AMTs) control in vehicles is conspicuous. The control applications have grown fast and steadily due to the tremendous progress in power electronics components and the control software that enhance the requirements for delivering higher vehicles performance. AMTs control strategies achieve a reduction in the driveline dynamic oscillations behavior during gear shifting and clutch starting up processes. AMTs future expectations are an increase of torque capacity, more speed ratios and the development of advanced and efficient electronic control systems. This paper concerns with the progressing view of AMTs in the past, today and future, gives an overview of the potential dynamic problems concerned with AMTs and some control strategies used to solve those problems.展开更多
A nonlinear pressure controller was presented to track desired feeding pressure for the cutter feeding system(CFS) of trench cutter(TC) in the presence of unknown external disturbances.The feeding pressure control of ...A nonlinear pressure controller was presented to track desired feeding pressure for the cutter feeding system(CFS) of trench cutter(TC) in the presence of unknown external disturbances.The feeding pressure control of CFS is subjected to unknown load characteristics of rock or soil; in addition,the geological condition is time-varying.Due to the complex load characteristics of rock or soil,the feeding velocity of TC is related to geological conditions.What is worse,its dynamic model is subjected to uncertainties and its function is unknown.To deal with the particular characteristics of CFS,a novel adaptive fuzzy integral sliding mode control(AFISMC) was designed for feeding pressure control of CFS,which combines the robust characteristics of an integral sliding mode controller and the adaptive adjusting characteristics of an adaptive fuzzy controller.The AFISMC feeding pressure controller is synthesized using the backstepping technique.The stability of the overall closed-loop system consisting of the adaptive fuzzy inference system,integral sliding mode controller and the cutter feeding system is proved using Lyapunov theory.Experiments are conducted on a TC test bench with the AFISMC under different operating conditions.The experimental results demonstrate that the proposed AFISMC feeding pressure controller for CFS gives a superior and robust pressure tracking performance with maximum pressure tracking error within ?0.3 MPa.展开更多
In this paper, by introducing the flow velocity item into the classical Rayleigh-Plesset dynamic equation, a newequation, which does not involve the time term and can describe the motion of cavitation bubble in the st...In this paper, by introducing the flow velocity item into the classical Rayleigh-Plesset dynamic equation, a newequation, which does not involve the time term and can describe the motion of cavitation bubble in the steadycavitating flow, has been obtained. By solving the new motion equation using Runge-Kutta fourth order methodwith adaptive step size control, the dynamic behaviors of cavitation bubble driven by the varying pressure fielddownstream of a venturi cavitation reactor are numerically simulated. The effects of liquid temperature (correspondingto the saturated vapor pressure of liquid), cavitation number and inlet pressure of venturi on radial motionof bubble and pressure pulse due to the radial motion are analyzed and discussed in detail. Some dynamicbehaviors of bubble different from those in previous papers are displayed. In addition, the internal relationshipbetween bubble dynamics and process intensification is also discussed. The simulation results reported in thiswork reveal the variation laws of cavitation intensity with the flow conditions of liquid, and will lay a foundationfor the practical application of hydrodynamic cavitation technology.展开更多
文摘In recent years, the sustainable development of automatic manual transmissions (AMTs) control in vehicles is conspicuous. The control applications have grown fast and steadily due to the tremendous progress in power electronics components and the control software that enhance the requirements for delivering higher vehicles performance. AMTs control strategies achieve a reduction in the driveline dynamic oscillations behavior during gear shifting and clutch starting up processes. AMTs future expectations are an increase of torque capacity, more speed ratios and the development of advanced and efficient electronic control systems. This paper concerns with the progressing view of AMTs in the past, today and future, gives an overview of the potential dynamic problems concerned with AMTs and some control strategies used to solve those problems.
基金Project(2012AA041801)supported by the High-tech Research and Development Program of China
文摘A nonlinear pressure controller was presented to track desired feeding pressure for the cutter feeding system(CFS) of trench cutter(TC) in the presence of unknown external disturbances.The feeding pressure control of CFS is subjected to unknown load characteristics of rock or soil; in addition,the geological condition is time-varying.Due to the complex load characteristics of rock or soil,the feeding velocity of TC is related to geological conditions.What is worse,its dynamic model is subjected to uncertainties and its function is unknown.To deal with the particular characteristics of CFS,a novel adaptive fuzzy integral sliding mode control(AFISMC) was designed for feeding pressure control of CFS,which combines the robust characteristics of an integral sliding mode controller and the adaptive adjusting characteristics of an adaptive fuzzy controller.The AFISMC feeding pressure controller is synthesized using the backstepping technique.The stability of the overall closed-loop system consisting of the adaptive fuzzy inference system,integral sliding mode controller and the cutter feeding system is proved using Lyapunov theory.Experiments are conducted on a TC test bench with the AFISMC under different operating conditions.The experimental results demonstrate that the proposed AFISMC feeding pressure controller for CFS gives a superior and robust pressure tracking performance with maximum pressure tracking error within ?0.3 MPa.
基金support of the National Natural Science Foundation of China (Grant No. 50806078)the National High-Tech Research and Development Program of China (863 Program, Grant No. 2006AA05Z203).
文摘In this paper, by introducing the flow velocity item into the classical Rayleigh-Plesset dynamic equation, a newequation, which does not involve the time term and can describe the motion of cavitation bubble in the steadycavitating flow, has been obtained. By solving the new motion equation using Runge-Kutta fourth order methodwith adaptive step size control, the dynamic behaviors of cavitation bubble driven by the varying pressure fielddownstream of a venturi cavitation reactor are numerically simulated. The effects of liquid temperature (correspondingto the saturated vapor pressure of liquid), cavitation number and inlet pressure of venturi on radial motionof bubble and pressure pulse due to the radial motion are analyzed and discussed in detail. Some dynamicbehaviors of bubble different from those in previous papers are displayed. In addition, the internal relationshipbetween bubble dynamics and process intensification is also discussed. The simulation results reported in thiswork reveal the variation laws of cavitation intensity with the flow conditions of liquid, and will lay a foundationfor the practical application of hydrodynamic cavitation technology.