A series of centrifuge model tests of sandy slopes were conducted to study the dynamic behavior of pile-reinforced slopes subjected to various motions.Time histories of accelerations,bending moments and pile earth pre...A series of centrifuge model tests of sandy slopes were conducted to study the dynamic behavior of pile-reinforced slopes subjected to various motions.Time histories of accelerations,bending moments and pile earth pressures were obtained during excitation of the adjusted El Centro earthquake and a cyclic motion.Under a realistic earthquake,the overall response of the pile-reinforced slope is lower than that of the non-reinforced slope.The histories of bending moments and dynamic earth pressures reach their maximums soon after shaking started and then remain roughly stable until the end of shaking.Maximum moments occur at the height of 3.5 m,which is the deeper section of the pile,indicating the interface between the active loading and passive resistance regions.The dynamic earth pressures above the slope base steadily increase with the increase of height of pile.For the model under cyclic input motion,response amplitudes at different locations in the slope are almost the same,indicating no significant response amplification.Both the bending moment and earth pressure increase gradually over a long period.展开更多
The accurate monitor and prediction of fracturing pressure for formation is very important to hydraulic fracturing treatment operation, but whether hydraulic fracturing is successful or not, the fracturing fluid plays...The accurate monitor and prediction of fracturing pressure for formation is very important to hydraulic fracturing treatment operation, but whether hydraulic fracturing is successful or not, the fracturing fluid plays a very important role, leak-off coefficient is the most leading parameters of fracturing fluids. Mini-frac test was the most commonly used tools for leak-off coefficient analysis, but it has the shortcoming of time-consuming and costly that can not meet the requirement of the production. The main purpose of this paper is to introduce a simple and convenient leak off coefficient analysis method with more inexpensive and time-saving than former methods. Based on ISIP (instantaneous shut-in pressure) method, a new field method of leak off coefficient field analysis model was presented. According to twice ISIP of the fracturing treatment in field operation, therefore, fluid leak off coefficient and formation characteristic can be studied quickly and reliably. More than 40 wells were fractured using this field method. The results show that average liquid rates of post-fracturing was 20 m3/d which double improvement compared with the past treatment wells. It had an important role for fracturing treatments in low permeability used in field application. reservoirs, the new model for real time analysis and adjust is successful展开更多
To give an insight into the clocking effect and its influence on the wake transportation and its interaction, the unsteady three-dimensional flow through a 1.5-stage axial low pressure turbine is simulated numerically...To give an insight into the clocking effect and its influence on the wake transportation and its interaction, the unsteady three-dimensional flow through a 1.5-stage axial low pressure turbine is simulated numerically by using a density-correction based, Reynolds-Averaged Navier-Stokes equations commercial CFD code. The 2nd stator clocking is applied over ten equal tangential positions. The results show that the harmonic blade number ratio is an important factor affecting the clocking effect. The clocking effect has very small influence on the turbine efficiency in this investigation. The difference between the maximum and minimum efficiency is about 0.1%. The maximum efficiency can be achieved when the 1st stator wake enters the 2nd stator passage near blade suction surface and its adjacent wake passes through the 2nd stator passage close to blade pressure surface. The minimum efficiency appears if the 1st stator wake impinges upon the leading edge of the 2nd stator and its adjacent wake of the 1st stator passes through the mid-channel in the 2nd stator. The wake convective transportation and the blade circulation variation due to its impingement on the subsequent blade are the main mechanism affecting the pressure variation in blade surface.展开更多
基金Project(50639060) supported by the National Natural Science Foundation of ChinaProject(610103002) supported by the State Key Laboratory of Hydroscience and Engineering,Tsinghua University,China
文摘A series of centrifuge model tests of sandy slopes were conducted to study the dynamic behavior of pile-reinforced slopes subjected to various motions.Time histories of accelerations,bending moments and pile earth pressures were obtained during excitation of the adjusted El Centro earthquake and a cyclic motion.Under a realistic earthquake,the overall response of the pile-reinforced slope is lower than that of the non-reinforced slope.The histories of bending moments and dynamic earth pressures reach their maximums soon after shaking started and then remain roughly stable until the end of shaking.Maximum moments occur at the height of 3.5 m,which is the deeper section of the pile,indicating the interface between the active loading and passive resistance regions.The dynamic earth pressures above the slope base steadily increase with the increase of height of pile.For the model under cyclic input motion,response amplitudes at different locations in the slope are almost the same,indicating no significant response amplification.Both the bending moment and earth pressure increase gradually over a long period.
文摘The accurate monitor and prediction of fracturing pressure for formation is very important to hydraulic fracturing treatment operation, but whether hydraulic fracturing is successful or not, the fracturing fluid plays a very important role, leak-off coefficient is the most leading parameters of fracturing fluids. Mini-frac test was the most commonly used tools for leak-off coefficient analysis, but it has the shortcoming of time-consuming and costly that can not meet the requirement of the production. The main purpose of this paper is to introduce a simple and convenient leak off coefficient analysis method with more inexpensive and time-saving than former methods. Based on ISIP (instantaneous shut-in pressure) method, a new field method of leak off coefficient field analysis model was presented. According to twice ISIP of the fracturing treatment in field operation, therefore, fluid leak off coefficient and formation characteristic can be studied quickly and reliably. More than 40 wells were fractured using this field method. The results show that average liquid rates of post-fracturing was 20 m3/d which double improvement compared with the past treatment wells. It had an important role for fracturing treatments in low permeability used in field application. reservoirs, the new model for real time analysis and adjust is successful
基金supported by China Postdoctoral Science Foundation(Grant No.20100470694)Shanghai Postdoctoral Sustentation Fund,China(GrantNo.11R21413800)
文摘To give an insight into the clocking effect and its influence on the wake transportation and its interaction, the unsteady three-dimensional flow through a 1.5-stage axial low pressure turbine is simulated numerically by using a density-correction based, Reynolds-Averaged Navier-Stokes equations commercial CFD code. The 2nd stator clocking is applied over ten equal tangential positions. The results show that the harmonic blade number ratio is an important factor affecting the clocking effect. The clocking effect has very small influence on the turbine efficiency in this investigation. The difference between the maximum and minimum efficiency is about 0.1%. The maximum efficiency can be achieved when the 1st stator wake enters the 2nd stator passage near blade suction surface and its adjacent wake passes through the 2nd stator passage close to blade pressure surface. The minimum efficiency appears if the 1st stator wake impinges upon the leading edge of the 2nd stator and its adjacent wake of the 1st stator passes through the mid-channel in the 2nd stator. The wake convective transportation and the blade circulation variation due to its impingement on the subsequent blade are the main mechanism affecting the pressure variation in blade surface.