The objective of this study was to investigate the effect of moisture content, size and loading orientation on mechanical properties such as force, deformation and energy absorbed per unit volume for fracturing Irania...The objective of this study was to investigate the effect of moisture content, size and loading orientation on mechanical properties such as force, deformation and energy absorbed per unit volume for fracturing Iranian sunflower seed and its kernel (Azargol as a case study) under quasi-static loading. Sunflower seeds and their kernels were quasi-statically loaded in horizontal and vertical orientations with moisture content in three levels: 3%, 7% and 14%, and size category in three levels: small, medium and large. The obtained results showed that rupture force for both sunflower seed and its kernel decreased with increasing moisture content while the absorbed energy and deformation at rupture point increased for all size categories in both horizontal and vertical loading orientations. Also, seeds in the vertical orientation developed hull cracks at a higher level of force than those loaded in the horizontal orientation. However, for the kernels it was the opposite. In addition, the average forces required to cause kernel rupture were lower (11.64-39.9 N) than those required to rupture the seed (30.06-117.46 N) in both orientations. Seeds loaded in a vertical orientation absorbed more energy (87.67 mJ) prior to rupture than those loaded in the horizontal (46.60 mJ) orientation. However, for the kernels it was the opposite.展开更多
In order to well understand the mechanism of the mechanotransduction in bone, we propose a new model of transverse iso- tropic and poroelastic osteon cylinder considering Haversian fluid pressure. The analytical pore ...In order to well understand the mechanism of the mechanotransduction in bone, we propose a new model of transverse iso- tropic and poroelastic osteon cylinder considering Haversian fluid pressure. The analytical pore pressure and velocity solutions are obtained to examine the fluid transport behavior and pressure distribution in a loaded osteon on two different exterior sur- face cases. Case I is stress free and fully permeable and case I1 is impermeable. The following are the results obtained. (i) The Haversian fluid may not be ignored because it can enlarge the whole osteonal fluid pressure field, and it bears the external loads together with the solid skeleton. (ii) The increase of both axial strain amplitude and frequency can result in the increase of fluid pressure and velocity amplitudes, while in case II, the frequency has little effect on the fluid pressure amplitude. (iii) Under the same loading conditions, the pressure amplitude in case II is larger than that in case I, while the velocity amplitude is smaller than that in case I. This model permits the linking of the external loads to the osteonal fluid pressure and velocity, which may be a stimulus to the mechanotransduction of bone remodeling signals.展开更多
In this paper,the problem of axially symmetric deformation is examined for a composite cylindrical tube under equal axial loads acting on its two ends,where the tube is composed of two different incompressible neo-Hoo...In this paper,the problem of axially symmetric deformation is examined for a composite cylindrical tube under equal axial loads acting on its two ends,where the tube is composed of two different incompressible neo-Hookean materials.Significantly,the implicit analytical solutions describing the deformation of the tube are proposed.Numerical simulations are given to further illustrate the qualitative properties of the solutions and some meaningful conclusions are obtained.In the tension case,with the increasing axial loads or with the decreasing ratio of shear moduli of the outer and the inner materials,it is proved that the tube will shrink more along the radial direction and will extend more along the axial direction.Under either tension or compression,the deformation along the axial direction is obvious near the two ends of the tube,while in the rest,the change is relatively small.Similarly,for a large domain of the middle part,the axial elongation is almost constant;however,the variation is very fast near the two ends.In addition,the absolute value of the axial displacement increases gradually from the central cross-section of the tube and achieves the maximum at the two endpoints.展开更多
Postbuckling behavior of the 3D braided rectangular plates subjected to uniaxial compression combined with transverse loads in thermal environments is presented.Based on a micro-macro-mechanical model,a 3D braided com...Postbuckling behavior of the 3D braided rectangular plates subjected to uniaxial compression combined with transverse loads in thermal environments is presented.Based on a micro-macro-mechanical model,a 3D braided composite may be treated as a cell system and the geometry of each cell is deeply dependent on its position in the cross-section of the plate.The material properties of the epoxy are expressed as a linear function of temperature.Uniform,linear and nonlinear temperature distributions through the thickness are involved.The lateral pressure(three types of transverse loads,i.e.transverse uniform load;transverse patch load over a central area;and transverse sinusoidal load)is first converted into an initial deflection and the initial geometric imperfection of the plate is taken into account.The governing equations are based on Reddy’s higher-order shear deformation plate theory with a von Kármán-type of kinematic nonlinearity.Two cases of the in-plane boundary conditions are also taken into account.A perturbation technique is employed to determine buckling loads and postbuckling equilibrium paths of simply supported 3D braided rectangular plates.The results reveal that the temperature rise,geometric parameter,fiber volume fraction,braiding angle,the character of the in-plane boundary conditions and different types of initial transverse loads have a significant effect on the buckling and postbuckling behavior of the braided composite plates.展开更多
文摘The objective of this study was to investigate the effect of moisture content, size and loading orientation on mechanical properties such as force, deformation and energy absorbed per unit volume for fracturing Iranian sunflower seed and its kernel (Azargol as a case study) under quasi-static loading. Sunflower seeds and their kernels were quasi-statically loaded in horizontal and vertical orientations with moisture content in three levels: 3%, 7% and 14%, and size category in three levels: small, medium and large. The obtained results showed that rupture force for both sunflower seed and its kernel decreased with increasing moisture content while the absorbed energy and deformation at rupture point increased for all size categories in both horizontal and vertical loading orientations. Also, seeds in the vertical orientation developed hull cracks at a higher level of force than those loaded in the horizontal orientation. However, for the kernels it was the opposite. In addition, the average forces required to cause kernel rupture were lower (11.64-39.9 N) than those required to rupture the seed (30.06-117.46 N) in both orientations. Seeds loaded in a vertical orientation absorbed more energy (87.67 mJ) prior to rupture than those loaded in the horizontal (46.60 mJ) orientation. However, for the kernels it was the opposite.
基金supported by the National Natural Science Foundation ofChina (Grant No. 11032008)the Shanxi Province Outstanding Innovation Project for Graduates (Grant No. 20113041)
文摘In order to well understand the mechanism of the mechanotransduction in bone, we propose a new model of transverse iso- tropic and poroelastic osteon cylinder considering Haversian fluid pressure. The analytical pore pressure and velocity solutions are obtained to examine the fluid transport behavior and pressure distribution in a loaded osteon on two different exterior sur- face cases. Case I is stress free and fully permeable and case I1 is impermeable. The following are the results obtained. (i) The Haversian fluid may not be ignored because it can enlarge the whole osteonal fluid pressure field, and it bears the external loads together with the solid skeleton. (ii) The increase of both axial strain amplitude and frequency can result in the increase of fluid pressure and velocity amplitudes, while in case II, the frequency has little effect on the fluid pressure amplitude. (iii) Under the same loading conditions, the pressure amplitude in case II is larger than that in case I, while the velocity amplitude is smaller than that in case I. This model permits the linking of the external loads to the osteonal fluid pressure and velocity, which may be a stimulus to the mechanotransduction of bone remodeling signals.
基金supported by the National Natural Science Foundation of China(Grant Nos.10872045 and 11232003)the Program for New Century Excellent Talents in University(Grant No.NCET-09-0096)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.DC120101121)the Program for Liaoning Excellent Talents in University(Grant No.LR2012044)
文摘In this paper,the problem of axially symmetric deformation is examined for a composite cylindrical tube under equal axial loads acting on its two ends,where the tube is composed of two different incompressible neo-Hookean materials.Significantly,the implicit analytical solutions describing the deformation of the tube are proposed.Numerical simulations are given to further illustrate the qualitative properties of the solutions and some meaningful conclusions are obtained.In the tension case,with the increasing axial loads or with the decreasing ratio of shear moduli of the outer and the inner materials,it is proved that the tube will shrink more along the radial direction and will extend more along the axial direction.Under either tension or compression,the deformation along the axial direction is obvious near the two ends of the tube,while in the rest,the change is relatively small.Similarly,for a large domain of the middle part,the axial elongation is almost constant;however,the variation is very fast near the two ends.In addition,the absolute value of the axial displacement increases gradually from the central cross-section of the tube and achieves the maximum at the two endpoints.
基金supported by the National Natural Science Foundation of China(Grant Nos.50909059,51279222)
文摘Postbuckling behavior of the 3D braided rectangular plates subjected to uniaxial compression combined with transverse loads in thermal environments is presented.Based on a micro-macro-mechanical model,a 3D braided composite may be treated as a cell system and the geometry of each cell is deeply dependent on its position in the cross-section of the plate.The material properties of the epoxy are expressed as a linear function of temperature.Uniform,linear and nonlinear temperature distributions through the thickness are involved.The lateral pressure(three types of transverse loads,i.e.transverse uniform load;transverse patch load over a central area;and transverse sinusoidal load)is first converted into an initial deflection and the initial geometric imperfection of the plate is taken into account.The governing equations are based on Reddy’s higher-order shear deformation plate theory with a von Kármán-type of kinematic nonlinearity.Two cases of the in-plane boundary conditions are also taken into account.A perturbation technique is employed to determine buckling loads and postbuckling equilibrium paths of simply supported 3D braided rectangular plates.The results reveal that the temperature rise,geometric parameter,fiber volume fraction,braiding angle,the character of the in-plane boundary conditions and different types of initial transverse loads have a significant effect on the buckling and postbuckling behavior of the braided composite plates.