The vee-ring is one of the most characteristic features of the fine-blanking process which is derived from the conventional blanking. With the vee-ring, a counter plate and some other working parameters, a component w...The vee-ring is one of the most characteristic features of the fine-blanking process which is derived from the conventional blanking. With the vee-ring, a counter plate and some other working parameters, a component with a precise geometry and smoothly blanked surface can be produced without any major secondary operations. However, these working parameters are always empirically determined or determined by trial-and-error method, which is time-consuming and expensive. In this study, a numerical simulation method was used to analyze the el- feet of vee-ring factors on product quality, such as distance between vee-ring and punch, vee-ring height and blank holder force, so as to obtain as high clean cut ratio as possible. During the simulation, the model was assumed as axisymmetric one and the workpiece was considered as rigid plastic material, meanwhile the tools were defined as rigid bodies so as to shorten the computational time. A damage model taking into account the influence of hydro- static stress was used to simulate material fracture in fine-blanking. The result obtained from the simulation indi- cated that with the help of vee-ring, the metal material near the shear band does not flow with the punch penetra- tion and high compressive stress in the shear band tained with a vee-ring model than the one obtained distance between vee-ring and punch is, the higher is generated. Consequently, higher clean cut ratio can be ob- with a plane blank holder model. Furthermore, the longer the the height of roll-over becomes.展开更多
The present research work emphasized on identifying and optimizing various significant process parameters of high pressure die casting by using QFD-Taguchi based hybrid approach in order to yield the optimum casting d...The present research work emphasized on identifying and optimizing various significant process parameters of high pressure die casting by using QFD-Taguchi based hybrid approach in order to yield the optimum casting density of the A380alloy.Identification of critical process parameters,selection of appropriate orthogonal array,analysis of means and analysis of variance are employed to study the performance characteristic of the die casting process.The most critical process parameters identified and optimized by QFD-Taguchi based hybrid approach,such as the injection pressure,the molten metal temperature,the plunger velocity(first and second stage)and the die temperature were explored in the experimental work.The results show that injection pressure is the most significant factor among the selected parameters.The contribution of the injection pressure to the variation of mean casting density is around61.483%.Confidence interval(CI)has also been estimated as0.000718for95%consistency level to validate the predicted range of optimum casting density of aforesaid alloy.展开更多
An accurate circuit of PWM/PFM mode converting and a circuit of auto-adaptively adjusting dimension of power transistor are described.The duty cycle of the signal when the control mode converts can be gained accuratel...An accurate circuit of PWM/PFM mode converting and a circuit of auto-adaptively adjusting dimension of power transistor are described.The duty cycle of the signal when the control mode converts can be gained accurately by using ratios of currents and capacitances,and an optimal dimension of power transistor is derived with different loads.The converter is designed by 0.35μm standard CMOS technology.Simulation results indicate that the converter starts work at 0.8 V input voltage.Combined with synchronized rectification,the transfer efficiency is higher than 90%with full load range,and achieves 97.5%at rating output.展开更多
Two large explosion trials (5 000 kg TNT and 500 kg ANFO) were conducted in Woomera, Australia in April/May 2006. Advance Protective Technologies for Engineering Structures (APTES) group tested 2 large single-storey c...Two large explosion trials (5 000 kg TNT and 500 kg ANFO) were conducted in Woomera, Australia in April/May 2006. Advance Protective Technologies for Engineering Structures (APTES) group tested 2 large single-storey concrete modules with individual components such as doors, windows and tiled panels. A description of the trial and details of various modules tested in these trials are presented in the paper. Numerical modelling and simulations are performed using computer programs, CONWEP, AIR3D and AUTODYN. A comparison of the pressure time histories obtained using these codes is made along with the concluding remarks.展开更多
Based on the stress-algebraic model, the turbulent buoyant jet with variable density was studied by the relation between density and concentration. A simple expression for buoyancy coefficient was proposed. The govern...Based on the stress-algebraic model, the turbulent buoyant jet with variable density was studied by the relation between density and concentration. A simple expression for buoyancy coefficient was proposed. The governing equations of turbulent buoyant jet with variable density were closed by introducing the expression of β and the relation between density and concentration. Numerical results for the jet axis with density difference agree well with experimental ones. By finite volume method, the 2 - D vertical jet's flow field with different jet angles was studied. The analysis of the relation among the vortex center, the position of separation point and jet angles shows that the circumfluenee field is the largest when the jet angle is 90°. The area turbulent kinetic energy ka is proposed and the relationship between mixing intensity and jet angles is analyzed based on it. Results show that the jet angle of is the optimum condition for jet water mixing with environment water;and the reduced rate of difference between the centerline density of jet and the density of ambient water is the largest at the jet angle of 90°.展开更多
Surrounding rock control in the overlying protective coal seam is a challenging topic for de-stressed mining of multi-seamed coal.Current research findings on roadway control were used in the design of a physical mode...Surrounding rock control in the overlying protective coal seam is a challenging topic for de-stressed mining of multi-seamed coal.Current research findings on roadway control were used in the design of a physical model of a complex textured roof having a varying thickness.The model was used to study roadway instability and collapse caused by dynamic pressure.The results show that when the thickness of the roof exceeds the bolted depth the roadway security is least and the roof has the greatest possibility for collapse.Numerical simulations were also carried out to study stress redistribution before and after roadway excavation during underlying protective seam mining.The evolution of roadway displacement and fracture,as affected by support methods,has been well studied.A series of support principles and technologies for mining affected roadways has been proposed after demonstration of successful practical application in the Huainan Mines.These principles and technologies are of extended value to deep coal mining support in China.展开更多
For mining extra-steep-thick coal seam, the sublevel top coal caving is a high efficient method in practical engineering. However, major challenges associated with mining high-section top-coal-caving (HSTCC) are rel...For mining extra-steep-thick coal seam, the sublevel top coal caving is a high efficient method in practical engineering. However, major challenges associated with mining high-section top-coal-caving (HSTCC) are related to the resulting high ground stresses. Inevitability, using the high-section sublevel top coal caving for extra-steep-thick coal seam, the large scale of mined-out area appears. If the prefracture blasting and hydraulic fracture techniques are utilized, the top coal damage and cracks will develop, and the mining complexity will increase, such as seam inclination, continuity, mechanical characteristics of roof and susceptibility of top coal, etc. First, the field conditions of B1+2 seam were investigated at the +588 level of the Weihuliang Underground Mine of China. Subsequently, according to caving mechanism of strata response obtained from several special models including physical simulation tests and numerical simulation models, the prefracture process including blasting and injecting water were analyzed. Then, the prefracture blasting technique was successfully applied to the caving of 52 m-sublevel seam. Finally, the effects were verified by advanced detecting instruments, and the results show these methods and measurements are feasible and valid.展开更多
This paper discusses the technique of casting concrete ofmicropiles with pressures and the consequence of comparisons with normal way of casting concrete (casting with gravity). Preliminary geotechnical studies have...This paper discusses the technique of casting concrete ofmicropiles with pressures and the consequence of comparisons with normal way of casting concrete (casting with gravity). Preliminary geotechnical studies have been made in specific area in Sudan to predict the soil parameters and then an experimental work has been done for an estimated number ofmicropiles with different diameters and different techniques of placing concrete with various amount of pressure. This study was carried out to learn the usefulness of this technique in the field of structural foundations in Sudan. Capacities of micropiles were compared in cases of non-pressure casting (normal way of casting concrete) and pressure casting. Through the results, it was found that the entry of pressure factor in the operation of casting concrete increases the capacities of micropiles. The increased value of ultimate load depends on the amount of pressure applied.展开更多
A memory reduction technique is proposed for solving stationary kinetic model equations. As implied by an integral solution of the stationary kinetic equation, a velocity distribution function can be reconstructed fro...A memory reduction technique is proposed for solving stationary kinetic model equations. As implied by an integral solution of the stationary kinetic equation, a velocity distribution function can be reconstructed from given macroscopic variables. Based on this fact, we propose a technique to reconstruct distribution function at discrete level, and employ it to develop an implicit numerical method for kinetic equations. The new implicit method only stores the macroscopic quantities which appear in the collision term, and does not store the distribution functions. As a result, enormous memory requirement for solving kinetic equations is totally relieved. Several boundary conditions, such as, inlet, outlet and isothermal boundaries, are discussed. Some numerical tests demonstrate the validity and efficiency of the technique.The new implicit solver provides nearly identical solution as the explicit kinetic solver, while the memory requirement is on the same order as the Navier–Stokes solver.展开更多
基金The National Natural Science Foundation of China(No50505027)
文摘The vee-ring is one of the most characteristic features of the fine-blanking process which is derived from the conventional blanking. With the vee-ring, a counter plate and some other working parameters, a component with a precise geometry and smoothly blanked surface can be produced without any major secondary operations. However, these working parameters are always empirically determined or determined by trial-and-error method, which is time-consuming and expensive. In this study, a numerical simulation method was used to analyze the el- feet of vee-ring factors on product quality, such as distance between vee-ring and punch, vee-ring height and blank holder force, so as to obtain as high clean cut ratio as possible. During the simulation, the model was assumed as axisymmetric one and the workpiece was considered as rigid plastic material, meanwhile the tools were defined as rigid bodies so as to shorten the computational time. A damage model taking into account the influence of hydro- static stress was used to simulate material fracture in fine-blanking. The result obtained from the simulation indi- cated that with the help of vee-ring, the metal material near the shear band does not flow with the punch penetra- tion and high compressive stress in the shear band tained with a vee-ring model than the one obtained distance between vee-ring and punch is, the higher is generated. Consequently, higher clean cut ratio can be ob- with a plane blank holder model. Furthermore, the longer the the height of roll-over becomes.
基金the National Institute of Technology,Manipur,Imphal for Financial Support to carry out the experimental work of Mr.K.Ch.Apparao
文摘The present research work emphasized on identifying and optimizing various significant process parameters of high pressure die casting by using QFD-Taguchi based hybrid approach in order to yield the optimum casting density of the A380alloy.Identification of critical process parameters,selection of appropriate orthogonal array,analysis of means and analysis of variance are employed to study the performance characteristic of the die casting process.The most critical process parameters identified and optimized by QFD-Taguchi based hybrid approach,such as the injection pressure,the molten metal temperature,the plunger velocity(first and second stage)and the die temperature were explored in the experimental work.The results show that injection pressure is the most significant factor among the selected parameters.The contribution of the injection pressure to the variation of mean casting density is around61.483%.Confidence interval(CI)has also been estimated as0.000718for95%consistency level to validate the predicted range of optimum casting density of aforesaid alloy.
基金Supported by National Youth Science Foundation of China(No.60806010)
文摘An accurate circuit of PWM/PFM mode converting and a circuit of auto-adaptively adjusting dimension of power transistor are described.The duty cycle of the signal when the control mode converts can be gained accurately by using ratios of currents and capacitances,and an optimal dimension of power transistor is derived with different loads.The converter is designed by 0.35μm standard CMOS technology.Simulation results indicate that the converter starts work at 0.8 V input voltage.Combined with synchronized rectification,the transfer efficiency is higher than 90%with full load range,and achieves 97.5%at rating output.
文摘Two large explosion trials (5 000 kg TNT and 500 kg ANFO) were conducted in Woomera, Australia in April/May 2006. Advance Protective Technologies for Engineering Structures (APTES) group tested 2 large single-storey concrete modules with individual components such as doors, windows and tiled panels. A description of the trial and details of various modules tested in these trials are presented in the paper. Numerical modelling and simulations are performed using computer programs, CONWEP, AIR3D and AUTODYN. A comparison of the pressure time histories obtained using these codes is made along with the concluding remarks.
基金the Natural Science Foundation of Liaoning Province(Grant No.20032115)
文摘Based on the stress-algebraic model, the turbulent buoyant jet with variable density was studied by the relation between density and concentration. A simple expression for buoyancy coefficient was proposed. The governing equations of turbulent buoyant jet with variable density were closed by introducing the expression of β and the relation between density and concentration. Numerical results for the jet axis with density difference agree well with experimental ones. By finite volume method, the 2 - D vertical jet's flow field with different jet angles was studied. The analysis of the relation among the vortex center, the position of separation point and jet angles shows that the circumfluenee field is the largest when the jet angle is 90°. The area turbulent kinetic energy ka is proposed and the relationship between mixing intensity and jet angles is analyzed based on it. Results show that the jet angle of is the optimum condition for jet water mixing with environment water;and the reduced rate of difference between the centerline density of jet and the density of ambient water is the largest at the jet angle of 90°.
基金Financial support for this work,provided by the National Key Technology R&D Program(No.2007BAK28B00)the National Natural Science Foundation for the Youth of China(No.50904064)+2 种基金the Research Fund for the Youth of China University of Mining & Technology(No.2008A004)the State Key Laboratory of Coal Resources and Safe Mining,CUMT(No.SKLCRSM09X03)the Research Fund of the State Key Laboratory of Coal Resources and Mine Safety,CUMT(No.08KF10)
文摘Surrounding rock control in the overlying protective coal seam is a challenging topic for de-stressed mining of multi-seamed coal.Current research findings on roadway control were used in the design of a physical model of a complex textured roof having a varying thickness.The model was used to study roadway instability and collapse caused by dynamic pressure.The results show that when the thickness of the roof exceeds the bolted depth the roadway security is least and the roof has the greatest possibility for collapse.Numerical simulations were also carried out to study stress redistribution before and after roadway excavation during underlying protective seam mining.The evolution of roadway displacement and fracture,as affected by support methods,has been well studied.A series of support principles and technologies for mining affected roadways has been proposed after demonstration of successful practical application in the Huainan Mines.These principles and technologies are of extended value to deep coal mining support in China.
基金Supported by the Natural Science Foundation of China (50375026, 50375028)
文摘For mining extra-steep-thick coal seam, the sublevel top coal caving is a high efficient method in practical engineering. However, major challenges associated with mining high-section top-coal-caving (HSTCC) are related to the resulting high ground stresses. Inevitability, using the high-section sublevel top coal caving for extra-steep-thick coal seam, the large scale of mined-out area appears. If the prefracture blasting and hydraulic fracture techniques are utilized, the top coal damage and cracks will develop, and the mining complexity will increase, such as seam inclination, continuity, mechanical characteristics of roof and susceptibility of top coal, etc. First, the field conditions of B1+2 seam were investigated at the +588 level of the Weihuliang Underground Mine of China. Subsequently, according to caving mechanism of strata response obtained from several special models including physical simulation tests and numerical simulation models, the prefracture process including blasting and injecting water were analyzed. Then, the prefracture blasting technique was successfully applied to the caving of 52 m-sublevel seam. Finally, the effects were verified by advanced detecting instruments, and the results show these methods and measurements are feasible and valid.
文摘This paper discusses the technique of casting concrete ofmicropiles with pressures and the consequence of comparisons with normal way of casting concrete (casting with gravity). Preliminary geotechnical studies have been made in specific area in Sudan to predict the soil parameters and then an experimental work has been done for an estimated number ofmicropiles with different diameters and different techniques of placing concrete with various amount of pressure. This study was carried out to learn the usefulness of this technique in the field of structural foundations in Sudan. Capacities of micropiles were compared in cases of non-pressure casting (normal way of casting concrete) and pressure casting. Through the results, it was found that the entry of pressure factor in the operation of casting concrete increases the capacities of micropiles. The increased value of ultimate load depends on the amount of pressure applied.
基金supported by the National Natural Science Foundation of China(11602091 and 91530319)the National Key Research and Development Plan(2016YFB0600805)
文摘A memory reduction technique is proposed for solving stationary kinetic model equations. As implied by an integral solution of the stationary kinetic equation, a velocity distribution function can be reconstructed from given macroscopic variables. Based on this fact, we propose a technique to reconstruct distribution function at discrete level, and employ it to develop an implicit numerical method for kinetic equations. The new implicit method only stores the macroscopic quantities which appear in the collision term, and does not store the distribution functions. As a result, enormous memory requirement for solving kinetic equations is totally relieved. Several boundary conditions, such as, inlet, outlet and isothermal boundaries, are discussed. Some numerical tests demonstrate the validity and efficiency of the technique.The new implicit solver provides nearly identical solution as the explicit kinetic solver, while the memory requirement is on the same order as the Navier–Stokes solver.