This paper presents an investigation on the effect of probe support on the flow field of an axial compressor.The experiment is carried out in a large-scale low-speed research compressor.A cylindrical probe support int...This paper presents an investigation on the effect of probe support on the flow field of an axial compressor.The experiment is carried out in a large-scale low-speed research compressor.A cylindrical probe support intruding to 50% blade span was installed at 50% chord upstream from the rotor leading edge.The region from 5° to 32° off the probe support in the direction of rotation at the rotor outlet was measured with a 5-hole probe and a high-response total pressure probe.The experiment is performed at both near-design and near-stall points.The measuring results of 5-hole probe and high-response total pressure probe indicate that the probe blockage effect is different at different blade spans.The wake of the probe support weakens the leakage vortex intensity at the tip region,leading to greater total pressure rise.At near-design condition,the presence of probe support has a negative effect on the region from 75% to 92% span,while improves the flow field below 75% span.At near stall condition,the probe support has a negative effect on the region from 70% to 90% span,and almost has no influence on the flow field below 70% span.展开更多
Pressure fluctuation at the vaneless space and vanes passages is one of the most important problems for the stable operation of a pump turbine. The fluctuation appears in any operating condition. Much research has bee...Pressure fluctuation at the vaneless space and vanes passages is one of the most important problems for the stable operation of a pump turbine. The fluctuation appears in any operating condition. Much research has been done on the pressure fluctuation of hydraulic machinery. However, the details of pressure fluctuation propagation of the pump turbine at the pump mode have not been revealed. The modem pump turbine with high water head requires the runner to be "flat", which would induce pressure fluctuation more easily than the low head pump turbine. In this article, a high head pump turbine model is used as the re- search object. As the pressure fluctuation at off-design point is more serious than at the design point, the low head condition is chosen as the research condition. Pressure fluctuation at the vaneless space and vanes passages is predicted by the computa- tional fluid dynamics method based on k-co shear stress transport model. The experiment conducted on the test rig of the Har- bin Institute of Large Electrical Machinery is used to verify the simulation method. It proves that the numerical method is a feasible way to research the fluctuation under this operating condition. The pressure fluctuation along the passage direction is analyzed at time and frequency domains. It is affected mainly by the interaction between the runner and vanes. In the circumferential direction, the influence of the special stay vane on the pressure fluctuation is got. The amplitude in the high-pressure side passage of that vane is lower than that in the other side. The study provides a basic understanding of the pressure fluctua- tion of a pump turbine and could be used as a reference to improve the operation stability of it.展开更多
In order to investigate the effects of probe support on the stall characteristics of micro compressors, an experiment was carried out on a large-scale low-speed research compressor according to the principle of geomet...In order to investigate the effects of probe support on the stall characteristics of micro compressors, an experiment was carried out on a large-scale low-speed research compressor according to the principle of geometric similarity. A cylindrical probe support intruding to 50% blade span was mounted at 50% chord upstream from the rotor blade leading edge. The static pressure rise characteristic of the compressor is measured, with and without the probe support respectively. The dynamic compressor behavior from pre-stall to full stall was also measured. The results indicate that the stability margin of the compressor is lowered after installing the probe support. The stall inception is aroused by modal wave disturbances. The disturbances developed into two stall cells smoothly before installing the probe support, while the disturbances first developed into a single stall cell then splitting into two stall cells after installing the probe support. The presence of probe support lowers the initial intensity of the rotating stall of the compressor, while it doesn't alter the intensity of the rotation stall after the compressor enters into full stall.展开更多
基金funded by the National Natural Science Foundation of China,Grant No.51161130525,51136003,and the 111 Project,No.B07009
文摘This paper presents an investigation on the effect of probe support on the flow field of an axial compressor.The experiment is carried out in a large-scale low-speed research compressor.A cylindrical probe support intruding to 50% blade span was installed at 50% chord upstream from the rotor leading edge.The region from 5° to 32° off the probe support in the direction of rotation at the rotor outlet was measured with a 5-hole probe and a high-response total pressure probe.The experiment is performed at both near-design and near-stall points.The measuring results of 5-hole probe and high-response total pressure probe indicate that the probe blockage effect is different at different blade spans.The wake of the probe support weakens the leakage vortex intensity at the tip region,leading to greater total pressure rise.At near-design condition,the presence of probe support has a negative effect on the region from 75% to 92% span,while improves the flow field below 75% span.At near stall condition,the probe support has a negative effect on the region from 70% to 90% span,and almost has no influence on the flow field below 70% span.
基金supported by the National Natural Science Foundation of China(Grant No.51176168)the National Key Technology Research and Development Program(Grant No.2011BAF03B01)
文摘Pressure fluctuation at the vaneless space and vanes passages is one of the most important problems for the stable operation of a pump turbine. The fluctuation appears in any operating condition. Much research has been done on the pressure fluctuation of hydraulic machinery. However, the details of pressure fluctuation propagation of the pump turbine at the pump mode have not been revealed. The modem pump turbine with high water head requires the runner to be "flat", which would induce pressure fluctuation more easily than the low head pump turbine. In this article, a high head pump turbine model is used as the re- search object. As the pressure fluctuation at off-design point is more serious than at the design point, the low head condition is chosen as the research condition. Pressure fluctuation at the vaneless space and vanes passages is predicted by the computa- tional fluid dynamics method based on k-co shear stress transport model. The experiment conducted on the test rig of the Har- bin Institute of Large Electrical Machinery is used to verify the simulation method. It proves that the numerical method is a feasible way to research the fluctuation under this operating condition. The pressure fluctuation along the passage direction is analyzed at time and frequency domains. It is affected mainly by the interaction between the runner and vanes. In the circumferential direction, the influence of the special stay vane on the pressure fluctuation is got. The amplitude in the high-pressure side passage of that vane is lower than that in the other side. The study provides a basic understanding of the pressure fluctua- tion of a pump turbine and could be used as a reference to improve the operation stability of it.
基金funded by the National Natural Science Foundation of China(Grant No.51161130525 and 51136003)the 111 Project,No.B07009
文摘In order to investigate the effects of probe support on the stall characteristics of micro compressors, an experiment was carried out on a large-scale low-speed research compressor according to the principle of geometric similarity. A cylindrical probe support intruding to 50% blade span was mounted at 50% chord upstream from the rotor blade leading edge. The static pressure rise characteristic of the compressor is measured, with and without the probe support respectively. The dynamic compressor behavior from pre-stall to full stall was also measured. The results indicate that the stability margin of the compressor is lowered after installing the probe support. The stall inception is aroused by modal wave disturbances. The disturbances developed into two stall cells smoothly before installing the probe support, while the disturbances first developed into a single stall cell then splitting into two stall cells after installing the probe support. The presence of probe support lowers the initial intensity of the rotating stall of the compressor, while it doesn't alter the intensity of the rotation stall after the compressor enters into full stall.