Based on observed data from Tanggu District in Tianjin, a back-propagation neural network (BPNN) model was introduced to predict possible land subsidence due to exploitation of groundwater. According to model estimati...Based on observed data from Tanggu District in Tianjin, a back-propagation neural network (BPNN) model was introduced to predict possible land subsidence due to exploitation of groundwater. According to model estimation under various hypothetical extraction scenarios, patterns of land subsidence at Tanggu District were studied and discussed.The predicted average background land subsidence rate of Tanggu is 9.47 mm/a.The significance of contribution of aquifers to land subsidence descends in order of units Ⅳ,Ⅲ,Ⅴ,Ⅱ.Land subsidence tends to deteriorate with the increase in total extraction rate.展开更多
This study proposes a novel approach to study stress field distribution and overlying ground pressure behavior in shallow seam mining in gully terrain.This approach combines numerical simulations and field tests based...This study proposes a novel approach to study stress field distribution and overlying ground pressure behavior in shallow seam mining in gully terrain.This approach combines numerical simulations and field tests based on the conditions of gully terrain in the Chuancao Gedan Mine.The effects of gully terrain on the in situ stress field of coal beds can be identified by the ratio of self-weight stress to vertical stress(η) at the location corresponding to the maximum vertical stress.Based on the function η =j(h),the effect of gully terrain on the stress field of overlying strata of the entire field can be characterized as a significantly affected area,moderately affected area,or non-affected area.Working face 6106 in the Chuancao Gedan Mine had a coal bed Jepth <80 m and was located in what was identified as a significantly affected area.Hence,mining may cause sliding of the gully slope and increased loading(including significant dynamic loading) on the roof strata.Field tests suggest that significant dynamic pressures were observed at the body and foot of the gully slope,and that dynamic loadings were observed upslope of the working face expansion,provided that the expanding direction of the working face is parallel to the gully.展开更多
The failure depth of the coal seam floor is one important consideration that must be kept in mind when mining is carried out above a confined aquifer.Determining the floor failure depth is the essential precondition f...The failure depth of the coal seam floor is one important consideration that must be kept in mind when mining is carried out above a confined aquifer.Determining the floor failure depth is the essential precondition for predicting the water-resisting ability of the floor.We have used a high-precision microseismic monitoring technique to overcome the limited amount of data available from field measurements. The failure depth of a coal seam floor,especially an inclined coal seam floor,may be more accurately estimated by monitoring the continuous,dynamic failure of the floor.The monitoring results indicate the failure depth of the coal seam floor near the workface conveyance roadway(the lower crossheading) is deeper and that the failure range is wider here compared to the coal seam floor near the return airway(the upper crossheading).The results of micro-seismic monitoring show that the dangerous area for water-inrush from the coal seam floor may be identified.This provides an important field measurement that helps ensure safe and highly efficient mining of the inclined coal seam above the confined aquifer at the Taoyuan Coal Mine.展开更多
Based on the engineering background of double-unit face mining under complicated geological conditions and the lagging fully-mechanized face surpassing the fore mechanized face of double-unit face in Zhou Yuanshan coa...Based on the engineering background of double-unit face mining under complicated geological conditions and the lagging fully-mechanized face surpassing the fore mechanized face of double-unit face in Zhou Yuanshan coal mine, strata-pressure behavior in the process was analyzed based on FLAC3D and on-site measurement. The results show that the stress concentration factor of superposition abutment pressure and the alternate distance of double-unit face are meeting gauss function, the relationship between the depth of stress concentration point and alternate distance also meets gaussian function. When the alternate distance is larger than 24 m, the superimposition of pilot support pressure in the double-unit face is weak. When the alternate distance is more than 12-15 m, the changes of the roof subsidence coefficient and the depth of stress con- centration point are stabilized; when the alternate distance is 3-6 m, the fore working face end is in the greatest impact area of superposition abutment pressure, this area should be avoided in determining the reasonable alternate distance.展开更多
The paper analyses the stress characteristics in longwall face and its interaction with impact coal cutting, and puts forward the operation method for impact coal cotting. Similar material to the coal in particular mi...The paper analyses the stress characteristics in longwall face and its interaction with impact coal cutting, and puts forward the operation method for impact coal cotting. Similar material to the coal in particular mine was used to simulate the coal mass. Impact coal breaking test was performed on the test rig. The traveling pattern of the impact stress wave in coal and the dynamic response of impact parameters on coal property is analyzed.展开更多
基金Supported by Tianjin Land Subsidence Controlling Office(No.kJ/095).
文摘Based on observed data from Tanggu District in Tianjin, a back-propagation neural network (BPNN) model was introduced to predict possible land subsidence due to exploitation of groundwater. According to model estimation under various hypothetical extraction scenarios, patterns of land subsidence at Tanggu District were studied and discussed.The predicted average background land subsidence rate of Tanggu is 9.47 mm/a.The significance of contribution of aquifers to land subsidence descends in order of units Ⅳ,Ⅲ,Ⅴ,Ⅱ.Land subsidence tends to deteriorate with the increase in total extraction rate.
基金supported by the Fundamental Research Funds for the Central Universities of China University of Mining and Technology(No.2014ZDPY21)
文摘This study proposes a novel approach to study stress field distribution and overlying ground pressure behavior in shallow seam mining in gully terrain.This approach combines numerical simulations and field tests based on the conditions of gully terrain in the Chuancao Gedan Mine.The effects of gully terrain on the in situ stress field of coal beds can be identified by the ratio of self-weight stress to vertical stress(η) at the location corresponding to the maximum vertical stress.Based on the function η =j(h),the effect of gully terrain on the stress field of overlying strata of the entire field can be characterized as a significantly affected area,moderately affected area,or non-affected area.Working face 6106 in the Chuancao Gedan Mine had a coal bed Jepth <80 m and was located in what was identified as a significantly affected area.Hence,mining may cause sliding of the gully slope and increased loading(including significant dynamic loading) on the roof strata.Field tests suggest that significant dynamic pressures were observed at the body and foot of the gully slope,and that dynamic loadings were observed upslope of the working face expansion,provided that the expanding direction of the working face is parallel to the gully.
基金supported by the National Basic Research Program ofChina(No.2010CB202210)the National Natural Science Foundation of China(No.50874103)+1 种基金the Natural Science Foundation of Jiangsu Province(No.KB2008135)as well as by the Qinglan Project of Jiangsu Province
文摘The failure depth of the coal seam floor is one important consideration that must be kept in mind when mining is carried out above a confined aquifer.Determining the floor failure depth is the essential precondition for predicting the water-resisting ability of the floor.We have used a high-precision microseismic monitoring technique to overcome the limited amount of data available from field measurements. The failure depth of a coal seam floor,especially an inclined coal seam floor,may be more accurately estimated by monitoring the continuous,dynamic failure of the floor.The monitoring results indicate the failure depth of the coal seam floor near the workface conveyance roadway(the lower crossheading) is deeper and that the failure range is wider here compared to the coal seam floor near the return airway(the upper crossheading).The results of micro-seismic monitoring show that the dangerous area for water-inrush from the coal seam floor may be identified.This provides an important field measurement that helps ensure safe and highly efficient mining of the inclined coal seam above the confined aquifer at the Taoyuan Coal Mine.
基金Supported by the National Natural Science Foundation of China (50974059)
文摘Based on the engineering background of double-unit face mining under complicated geological conditions and the lagging fully-mechanized face surpassing the fore mechanized face of double-unit face in Zhou Yuanshan coal mine, strata-pressure behavior in the process was analyzed based on FLAC3D and on-site measurement. The results show that the stress concentration factor of superposition abutment pressure and the alternate distance of double-unit face are meeting gauss function, the relationship between the depth of stress concentration point and alternate distance also meets gaussian function. When the alternate distance is larger than 24 m, the superimposition of pilot support pressure in the double-unit face is weak. When the alternate distance is more than 12-15 m, the changes of the roof subsidence coefficient and the depth of stress con- centration point are stabilized; when the alternate distance is 3-6 m, the fore working face end is in the greatest impact area of superposition abutment pressure, this area should be avoided in determining the reasonable alternate distance.
文摘The paper analyses the stress characteristics in longwall face and its interaction with impact coal cutting, and puts forward the operation method for impact coal cotting. Similar material to the coal in particular mine was used to simulate the coal mass. Impact coal breaking test was performed on the test rig. The traveling pattern of the impact stress wave in coal and the dynamic response of impact parameters on coal property is analyzed.