The effects of reduction ratio during roll bonding on the microstructural evolution at interface and subsequent mechanical properties of roll-bonded Al/Cu 2-ply sheets were investigated. The interface microstructures ...The effects of reduction ratio during roll bonding on the microstructural evolution at interface and subsequent mechanical properties of roll-bonded Al/Cu 2-ply sheets were investigated. The interface microstructures for several Al/Cu 2-ply sheets fabricated under different reduction ratios between 30% and 65% were verified by transmission electron microscopy(TEM). Taking the difference of interface microstructure into consideration, 3-point bending and peel tests were performed for obtaining flexural and bonding strengths for Al/Cu 2-ply sheets. The effect of the quantified areas of metallurgical bonding at interfaces on the bonding strength was also discussed. The results show that both the bonding and flexural strengths for Al/Cu 2-ply sheets are reduced by decreasing the reduction ratio during the roll bonding process, which is strongly correlated with the interface microstructure. This was especially verified by observing the interface delamination from the 3-point bent samples.展开更多
A precise force model is of vital importance for dynamics and control of solar sails. Among various factors, deviations from the ideal flat sails, elastic deformations of the sails, are really important as most solar ...A precise force model is of vital importance for dynamics and control of solar sails. Among various factors, deviations from the ideal flat sails, elastic deformations of the sails, are really important as most solar sails are large flexible membranes. In this study, the deformed sails are modeled as smooth curved surfaces and a general total force model (GTFM) for the deformed sails is proposed. Various simplified versions of this GTFM are also derived for the symmetric deformation cases. Furthermore, differences between the ideal force models and our precise GTFM are investigated. The numerical results demonstrate that both the previous ideal reflected model and flat optical model are not as satisfactory as claimed before, by contrast with the actual dynamics from the GTFM. Thus this work paves the way for sail craft's precise navigation where exact forces are needed.展开更多
Continuous roll forming(CRF) is a novel forming process for three-dimensional surface parts,in which a pair of bendable forming rolls is used as sheet metal forming tool.By controlling the gap between the upper and lo...Continuous roll forming(CRF) is a novel forming process for three-dimensional surface parts,in which a pair of bendable forming rolls is used as sheet metal forming tool.By controlling the gap between the upper and lower forming rolls,sheet metal is non-uniformly extended in the longitudinal direction while it is bent in the transverse direction during the rolling process.As a result,longitudinal bending is gained and a doubly curved surface is formed.With the rotations of the forming rolls,the sheet metal is deformed consecutively,and a three-dimensional surface part is shaped continuously.In this paper,the mechanism of the three-dimensional surface formation in CRF is set forth.Through theoretical analysis of the CRF process,the governing equations for the bending deformation in rolling process are presented.Based on the simplification on the deformation and material model,the formulation to calculate the longitudinal bending deformation is derived,and the methods to design the compression ratio and the roll gap are given,the effects of compression ratio of rolling and the width of blank sheet on the longitudinal bending curvature are analyzed.The forming experiments on typical surface parts and measured results show that forming results with good precision can be obtained by CRF process.展开更多
基金Project(10037273) supported by the Ministry of Knowledge Economy,Korea
文摘The effects of reduction ratio during roll bonding on the microstructural evolution at interface and subsequent mechanical properties of roll-bonded Al/Cu 2-ply sheets were investigated. The interface microstructures for several Al/Cu 2-ply sheets fabricated under different reduction ratios between 30% and 65% were verified by transmission electron microscopy(TEM). Taking the difference of interface microstructure into consideration, 3-point bending and peel tests were performed for obtaining flexural and bonding strengths for Al/Cu 2-ply sheets. The effect of the quantified areas of metallurgical bonding at interfaces on the bonding strength was also discussed. The results show that both the bonding and flexural strengths for Al/Cu 2-ply sheets are reduced by decreasing the reduction ratio during the roll bonding process, which is strongly correlated with the interface microstructure. This was especially verified by observing the interface delamination from the 3-point bent samples.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10902056 and 10832004)
文摘A precise force model is of vital importance for dynamics and control of solar sails. Among various factors, deviations from the ideal flat sails, elastic deformations of the sails, are really important as most solar sails are large flexible membranes. In this study, the deformed sails are modeled as smooth curved surfaces and a general total force model (GTFM) for the deformed sails is proposed. Various simplified versions of this GTFM are also derived for the symmetric deformation cases. Furthermore, differences between the ideal force models and our precise GTFM are investigated. The numerical results demonstrate that both the previous ideal reflected model and flat optical model are not as satisfactory as claimed before, by contrast with the actual dynamics from the GTFM. Thus this work paves the way for sail craft's precise navigation where exact forces are needed.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51275202 and 51075186)
文摘Continuous roll forming(CRF) is a novel forming process for three-dimensional surface parts,in which a pair of bendable forming rolls is used as sheet metal forming tool.By controlling the gap between the upper and lower forming rolls,sheet metal is non-uniformly extended in the longitudinal direction while it is bent in the transverse direction during the rolling process.As a result,longitudinal bending is gained and a doubly curved surface is formed.With the rotations of the forming rolls,the sheet metal is deformed consecutively,and a three-dimensional surface part is shaped continuously.In this paper,the mechanism of the three-dimensional surface formation in CRF is set forth.Through theoretical analysis of the CRF process,the governing equations for the bending deformation in rolling process are presented.Based on the simplification on the deformation and material model,the formulation to calculate the longitudinal bending deformation is derived,and the methods to design the compression ratio and the roll gap are given,the effects of compression ratio of rolling and the width of blank sheet on the longitudinal bending curvature are analyzed.The forming experiments on typical surface parts and measured results show that forming results with good precision can be obtained by CRF process.