期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
试听室声学(二) 被引量:2
1
作者 翁泰来 《电声技术》 北大核心 2004年第9期8-11,共4页
关键词 试听室 压强区 扩散 波动声学 直达声 早期反射声 混响声
下载PDF
Flow structure around high-speed train in open air 被引量:8
2
作者 田红旗 黄莎 杨明智 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期747-752,共6页
According to the analysis of the turbulent intensity level around the high-speed train, the maximum turbulent intensity ranges from 0.2 to 0.5 which belongs to high turbulent flow. The flow field distribution law was ... According to the analysis of the turbulent intensity level around the high-speed train, the maximum turbulent intensity ranges from 0.2 to 0.5 which belongs to high turbulent flow. The flow field distribution law was studied and eight types of flow regions were proposed. They are high pressure with air stagnant region, pressure decreasing with air accelerating region, low pressure with high air flow velocity region I, turbulent region, steady flow region, low pressure with high air flow velocity region II,pressure increasing with air decelerating region and wake region. The analysis of the vortex structure around the train shows that the vortex is mainly induced by structures with complex mutation and large curvature change. The head and rear of train, the underbody structure, the carriage connection section and the wake region are the main vortex generating sources while the train body with even cross-section has rare vortexes. The wake structure development law studied lays foundation for the train drag reduction. 展开更多
关键词 flow around high-speed train turbulence intensity flow region vortex structure wake region
下载PDF
Study on Fine Crustal Structure of the Sanhe-Pinggu Earthquake (M8.0) Region by Deep Seismic Reflection Profiling 被引量:3
3
作者 ZhangXiankang ZhaoJinren +7 位作者 LiuGuohua SongWenrong LiuBaojin ZhaoChengbin ChengShuangxi LiuJianda GuMenglin SunZhenguo 《Earthquake Research in China》 2003年第2期122-133,共12页
Two near-vertical deep seismic reflection profiles (140km-long, 24-fold) were completed in the 1679 Sanhe-Pinggu earthquake (M8.0) region. The profiles ran through the Xiadian fault and the Ershilichangshan fault. The... Two near-vertical deep seismic reflection profiles (140km-long, 24-fold) were completed in the 1679 Sanhe-Pinggu earthquake (M8.0) region. The profiles ran through the Xiadian fault and the Ershilichangshan fault. The profiling result shows that the crust in this region is divided into the upper crust, the lower crust and the crust-mantle transitional zone by two powerful laminated reflectors: one at the two-way travel-time of about 7.0s (21km), the other at about 11.0~12.5s (33~37km). Crustal structure varies significantly in vertical direction. The shallow part is characterized by obvious stratification, multilayers and complexity. The upper crust on the whole features reflection “transparency”, while the lower crust features distinct reflectivity. Crustal structure also varies a lot in the lateral direction. The main fracture in this region is the deep fault under the Xiadian fault. This deep fault is steeply inclined (nearly vertical), and is supposed to be the causative fault of the Sanhe-Pinggu M8.0 earthquake. The two profiles respectively reveal the existence of local strong reflectivity in the lower crust and the lower part of the upper crust, which is assumed to be a dike or rock mass formed by the upwelling and cooling down of materials from the upper mantle. Magmatic activity in this part brought about differences in regional stress distribution, which then gave rise to the formation of the deep fault. That is supposed to be the deep structural setting for the Sanhe-Pinggu M8.0 earthquake. 展开更多
关键词 The Sanhe-Pinggu meizoseismal region Deep reflection profiling Fine structure study of earthquake source
下载PDF
Bonding between Aggregates and Cement Pastes in Concrete
4
作者 Almahdi Bahalul Ahmed Deiaf 《Journal of Civil Engineering and Architecture》 2016年第3期353-358,共6页
This investigation was carried out to study the effect of aggregate roughness on ITZ (interfacial transition zone) at same water/cement ratio and the influence of silica fume on the bond strength. On the experimenta... This investigation was carried out to study the effect of aggregate roughness on ITZ (interfacial transition zone) at same water/cement ratio and the influence of silica fume on the bond strength. On the experimental side, two types of aggregates (limestone and granite) were used, which were prepared with broken surface. Cement (Type I) was used with same w/c ratio for all batches. In order to study the effect of silica fume on the bond, the same mixes were produced with 8% silica fume. Three different tests were performed: "pull a part", Brazilian test and compressive strength test. The specimens for Brazilian and compressive strength were tested after 28 days, while the "pull a part" specimens were tested after 29 days. The result showed that the bond strength is influenced by the surface roughness of aggregate. For the same mix, limestone recorded higher bond strength than granite. Moreover, the bond strength is increased by adding the silica fume. 展开更多
关键词 ITZ LIMESTONE GRANITE silica fume bond strength "pull a part" test
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部