Loess and laterite distributed widely in the northern and southern China cannot be directly used as the natural barrier to isolate the solid waste because of their high hydraulic conductivity. In this paper, they are ...Loess and laterite distributed widely in the northern and southern China cannot be directly used as the natural barrier to isolate the solid waste because of their high hydraulic conductivity. In this paper, they are enhanced by bentonite to improve their hydraulic performance. The impact of bentonite content and water content on compressive strength of the compacted soil was investigated. The effects of bentonite content, water content, dry density and hydraulic gradient on the hydraulic conductivity were studied in detail. For the laterite and the laterite with 8% of bentonite, the experimental results of hydraulic conductivity can be applied in the engineering design. However, for the loess and the bentonite enhanced loess, those of hydraulic conductivity can not be directly applied in the engineering design because their hydraulic performance does not comply with the Darcy's law. These experimental results have to be carefully modified before application.展开更多
In order to study the basic characteristics of gas flow field in the atomizing chamber near the nozzle outlet of the vortical loop slit atomizer and its influence mechanism on clogging phenomenon,the computational flu...In order to study the basic characteristics of gas flow field in the atomizing chamber near the nozzle outlet of the vortical loop slit atomizer and its influence mechanism on clogging phenomenon,the computational fluid dynamics(CFD)software Fluent is used to conduct a numerical simulation of the gas flow field in the atomizing chamber near the nozzle outlet of this atomizer under different annular slit widths,different atomization gas pressures and different protrusion lengths of the melt delivery tube. The results show that under atomization gas pressure p=4.5 MPa,the greater the annular slit width D,the lower the static temperature near the central hole outlet at the front end of the melt delivery tube,and the smaller the aspirating pressure at the front end of the melt delivery tube. These features can effectively prevent the occurrence of the clogging phenomenon of metallic melt. Under an annular slit width of D=1.2 mm,when the atomization gas pressure satisfies 1 MPa ≤ p ≤ 2 MPa and increases gradually,the aspirating pressure at the front end of the melt delivery tube will decline rapidly. This can prevent the clogging phenomenon of metallic melt. However,when the atomization gas pressure p >2 MPa,the greater the atomization gas pressure,the lower the static temperature near the central hole outlet at the front end of the melt delivery tube,and the greater the aspirating pressure at the front end of the melt delivery tube. Hence,the effect of preventing the solidification-induced clogging phenomenon of metallic melt is restricted. When atomization gas pressure is p =4.5 MPa and annular slit width is D=1.2 mm,the greater the protrusion length H of the melt delivery tube,and the smaller the aspirating pressure at its front end. The static temperature near the central hole that can be observed in its front end is approximate to effectively prevent the occurrence of clogging phenomenon of metallic melt. However,because of the small aspirating pressure,the metallic melt flows into the atomizing chamber from the central hole at the front end of the melt delivery tube at an increasing speed and the gas-melt ratio in the mass flow rate is reduced,which is not conducive to the improvement of atomization performance.展开更多
In this paper, it presented the results of experimental study of utilization of MgO cement as calcium hydrate replacement in lightweight composites based on hemp shives. The results of selected characteristics (compr...In this paper, it presented the results of experimental study of utilization of MgO cement as calcium hydrate replacement in lightweight composites based on hemp shives. The results of selected characteristics (compressive strength and coefficient of thermal conductivity) of hardened composites show that MgO cement based on the milled caustic magnesite is suitable alternative in comparison to conventional binders used in hemp concrete. This material leads to new environmentally products as non-load bearing building materials.展开更多
文摘Loess and laterite distributed widely in the northern and southern China cannot be directly used as the natural barrier to isolate the solid waste because of their high hydraulic conductivity. In this paper, they are enhanced by bentonite to improve their hydraulic performance. The impact of bentonite content and water content on compressive strength of the compacted soil was investigated. The effects of bentonite content, water content, dry density and hydraulic gradient on the hydraulic conductivity were studied in detail. For the laterite and the laterite with 8% of bentonite, the experimental results of hydraulic conductivity can be applied in the engineering design. However, for the loess and the bentonite enhanced loess, those of hydraulic conductivity can not be directly applied in the engineering design because their hydraulic performance does not comply with the Darcy's law. These experimental results have to be carefully modified before application.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Simulation and Test of the Flow Field of Gas Atomization Nozzle (No. 1001-KFA19184)。
文摘In order to study the basic characteristics of gas flow field in the atomizing chamber near the nozzle outlet of the vortical loop slit atomizer and its influence mechanism on clogging phenomenon,the computational fluid dynamics(CFD)software Fluent is used to conduct a numerical simulation of the gas flow field in the atomizing chamber near the nozzle outlet of this atomizer under different annular slit widths,different atomization gas pressures and different protrusion lengths of the melt delivery tube. The results show that under atomization gas pressure p=4.5 MPa,the greater the annular slit width D,the lower the static temperature near the central hole outlet at the front end of the melt delivery tube,and the smaller the aspirating pressure at the front end of the melt delivery tube. These features can effectively prevent the occurrence of the clogging phenomenon of metallic melt. Under an annular slit width of D=1.2 mm,when the atomization gas pressure satisfies 1 MPa ≤ p ≤ 2 MPa and increases gradually,the aspirating pressure at the front end of the melt delivery tube will decline rapidly. This can prevent the clogging phenomenon of metallic melt. However,when the atomization gas pressure p >2 MPa,the greater the atomization gas pressure,the lower the static temperature near the central hole outlet at the front end of the melt delivery tube,and the greater the aspirating pressure at the front end of the melt delivery tube. Hence,the effect of preventing the solidification-induced clogging phenomenon of metallic melt is restricted. When atomization gas pressure is p =4.5 MPa and annular slit width is D=1.2 mm,the greater the protrusion length H of the melt delivery tube,and the smaller the aspirating pressure at its front end. The static temperature near the central hole that can be observed in its front end is approximate to effectively prevent the occurrence of clogging phenomenon of metallic melt. However,because of the small aspirating pressure,the metallic melt flows into the atomizing chamber from the central hole at the front end of the melt delivery tube at an increasing speed and the gas-melt ratio in the mass flow rate is reduced,which is not conducive to the improvement of atomization performance.
文摘In this paper, it presented the results of experimental study of utilization of MgO cement as calcium hydrate replacement in lightweight composites based on hemp shives. The results of selected characteristics (compressive strength and coefficient of thermal conductivity) of hardened composites show that MgO cement based on the milled caustic magnesite is suitable alternative in comparison to conventional binders used in hemp concrete. This material leads to new environmentally products as non-load bearing building materials.