With the gradual depletion of mineral resources in the shallow part of the earth,resource exploitation continues to move deeper into the earth,it becomes a hot topic to simulate the whole process of rock strain soften...With the gradual depletion of mineral resources in the shallow part of the earth,resource exploitation continues to move deeper into the earth,it becomes a hot topic to simulate the whole process of rock strain softening,deformation and failure in deep environment,especially under high temperature and high pressure.On the basis of Lemaitre’s strain-equivalent principle,combined with statistics and damage theory,a statistical constitutive model of rock thermal damage under triaxial compression condition is established.At the same time,taking into account the existing damage model is difficult to reflect residual strength after rock failure,the residual strength is considered in this paper by introducing correction factor of damage variable,the model rationality is also verified by experiments.Analysis of results indicates that the damage evolution curve reflects the whole process of rock micro-cracks enclosure,initiation,expansion,penetration,and the formation of macro-cracks under coupled effect of temperature and confining pressure.Rock thermal damage shows logistic growth function with the increase of temperature.Under the same strain condition,rock total damage decreases with the rise of confining pressure.By studying the electron microscope images(SEM)of rock fracture,it is inferred that 35.40 MPa is the critical confining pressure of brittle to plastic transition for this granite.The model parameter F reflects the average strength of rock,and M reflects the morphological characteristics of rock stress–strain curves.The physical meanings of model parameters are clear and the model is suitable for complex stress states,which provides valuable references for the study of rock deformation and stability in deep engineering.展开更多
Low pore sedimentary rocks(from Guangxi, China) were subjected to uniaxial compression loading experiment under different initial stresses. The rock samples were investigated by nuclear magnetic resonance before and a...Low pore sedimentary rocks(from Guangxi, China) were subjected to uniaxial compression loading experiment under different initial stresses. The rock samples were investigated by nuclear magnetic resonance before and after the loading. The relationships between the mesoscopic rock damage and macroscopic mechanical parameters were established, and the initial damage stress of the low-porosity sedimentary rock was determined. The results showed that this type of rock has the initial stress of damage. When the initial loading stress is lower than the initial stress of damage, the T2 spectrum area of the rock sample gradually decreases, and the primary pores of the rock are further closed under the stress. The range of the initial stress of damage for this type of rock is 8-16 MPa. When the loading stress exceeds the initial stress of damage, the T2 spectrum area gradually increases, indicating that the porosity of the rock increases and microscopic damage of the rock appears. The rock damage degree is defined, and the nonlinear function between the rock damage degree and the initial loading stress is established.展开更多
Objective: To study the mechanism of rabbit lung injury caused by explosive decompression. Methods: A total of 42 rabbits and 10 rats were served as the experimental animals. A slow recompression decompression test an...Objective: To study the mechanism of rabbit lung injury caused by explosive decompression. Methods: A total of 42 rabbits and 10 rats were served as the experimental animals. A slow recompression decompression test and an explosive decompression test were applied to the animals, respectively. And the effects of the given tests on the animals were discussed. Results: The slow recompression decompression did not cause an obvious lung injury, but the explosive decompression did cause lung injuries in different degrees. The greater the decompression range was, the shorter the decompression duration was, and the heavier the lung injuries were. Conclusions: Explosive decompression can cause a similar lung injury as shock wave does. The primary mechanical causes of the lung injury might be a tensile strain or stress in the alveolar wall and the pulmonary surfaces impacts on the inside wall of the chest.展开更多
The antidepressant effects of the flavonoid-rieh fraction of Monodora tenuifolia seed extract were examined by assess- ing the extent of attenuation of behavioural alterations and oxidative damage in the rats that wer...The antidepressant effects of the flavonoid-rieh fraction of Monodora tenuifolia seed extract were examined by assess- ing the extent of attenuation of behavioural alterations and oxidative damage in the rats that were stressed by forced swim test. Com- pared with the model control group, the altered behavioural parameters were attenuated significantly (P 〈 0.05) in the group treated with the flavonoid-rich fraction (100 and 200 mg·kg^-1), comparable to the group treated with the standard drug, fluoxetine (10 mg·kg^-1). The flavonoid-rich fraction and fluoxetine improved significantly (P 〈 0.05) the activities of the antioxidant enzymes such as superoxide dismutase and catalase as well as other biochemical parameters such as reduced glutathione, protein, and nitrite in the brain of the stressed rats. These results suggested that the flavonoid-rich fraction of Monodora tenuifolia seed extract exerted the antidepres- sant-like effects which could be useful in the management of stress induced disease.展开更多
基金Projects(51604260,11802145)supported by the National Natural Science Foundation of ChinaProject(SKLGDUEK1204)supported by the State Key Laboratory for Geomechanics and Deep Underground Engineering,ChinaProject(BK20160416)supported by the Natural Science Foundation of Jiangsu Province of China
文摘With the gradual depletion of mineral resources in the shallow part of the earth,resource exploitation continues to move deeper into the earth,it becomes a hot topic to simulate the whole process of rock strain softening,deformation and failure in deep environment,especially under high temperature and high pressure.On the basis of Lemaitre’s strain-equivalent principle,combined with statistics and damage theory,a statistical constitutive model of rock thermal damage under triaxial compression condition is established.At the same time,taking into account the existing damage model is difficult to reflect residual strength after rock failure,the residual strength is considered in this paper by introducing correction factor of damage variable,the model rationality is also verified by experiments.Analysis of results indicates that the damage evolution curve reflects the whole process of rock micro-cracks enclosure,initiation,expansion,penetration,and the formation of macro-cracks under coupled effect of temperature and confining pressure.Rock thermal damage shows logistic growth function with the increase of temperature.Under the same strain condition,rock total damage decreases with the rise of confining pressure.By studying the electron microscope images(SEM)of rock fracture,it is inferred that 35.40 MPa is the critical confining pressure of brittle to plastic transition for this granite.The model parameter F reflects the average strength of rock,and M reflects the morphological characteristics of rock stress–strain curves.The physical meanings of model parameters are clear and the model is suitable for complex stress states,which provides valuable references for the study of rock deformation and stability in deep engineering.
基金Project(41672298)supported by the National Natural Science Foundation of China。
文摘Low pore sedimentary rocks(from Guangxi, China) were subjected to uniaxial compression loading experiment under different initial stresses. The rock samples were investigated by nuclear magnetic resonance before and after the loading. The relationships between the mesoscopic rock damage and macroscopic mechanical parameters were established, and the initial damage stress of the low-porosity sedimentary rock was determined. The results showed that this type of rock has the initial stress of damage. When the initial loading stress is lower than the initial stress of damage, the T2 spectrum area of the rock sample gradually decreases, and the primary pores of the rock are further closed under the stress. The range of the initial stress of damage for this type of rock is 8-16 MPa. When the loading stress exceeds the initial stress of damage, the T2 spectrum area gradually increases, indicating that the porosity of the rock increases and microscopic damage of the rock appears. The rock damage degree is defined, and the nonlinear function between the rock damage degree and the initial loading stress is established.
文摘Objective: To study the mechanism of rabbit lung injury caused by explosive decompression. Methods: A total of 42 rabbits and 10 rats were served as the experimental animals. A slow recompression decompression test and an explosive decompression test were applied to the animals, respectively. And the effects of the given tests on the animals were discussed. Results: The slow recompression decompression did not cause an obvious lung injury, but the explosive decompression did cause lung injuries in different degrees. The greater the decompression range was, the shorter the decompression duration was, and the heavier the lung injuries were. Conclusions: Explosive decompression can cause a similar lung injury as shock wave does. The primary mechanical causes of the lung injury might be a tensile strain or stress in the alveolar wall and the pulmonary surfaces impacts on the inside wall of the chest.
基金supported by the Tertiary Education Trust Fund,Nigeria with grant number 2012
文摘The antidepressant effects of the flavonoid-rieh fraction of Monodora tenuifolia seed extract were examined by assess- ing the extent of attenuation of behavioural alterations and oxidative damage in the rats that were stressed by forced swim test. Com- pared with the model control group, the altered behavioural parameters were attenuated significantly (P 〈 0.05) in the group treated with the flavonoid-rich fraction (100 and 200 mg·kg^-1), comparable to the group treated with the standard drug, fluoxetine (10 mg·kg^-1). The flavonoid-rich fraction and fluoxetine improved significantly (P 〈 0.05) the activities of the antioxidant enzymes such as superoxide dismutase and catalase as well as other biochemical parameters such as reduced glutathione, protein, and nitrite in the brain of the stressed rats. These results suggested that the flavonoid-rich fraction of Monodora tenuifolia seed extract exerted the antidepres- sant-like effects which could be useful in the management of stress induced disease.