The macroscopic mechanical properties of rocks are significantly influenced by their microstructure.As a material bonded by mineral grains,the grain morphology of crystalline rock is the primary factor influencing the...The macroscopic mechanical properties of rocks are significantly influenced by their microstructure.As a material bonded by mineral grains,the grain morphology of crystalline rock is the primary factor influencing the strength.However,most strength criteria neglect the strength variations caused by different grain characteristics in rocks.Furthermore,the traditional linear criteria tend to overestimate tensile strength and exhibit apex singularity.To address these shortcomings,a piecewise strength criterion that considers the grain size effect has been proposed.A part of an ellipse was employed to construct the envelope of the tensive-shear region on the meridian plane,to accurately reproduce the low tensile-compressive strength ratio.Based on the analysis of experimental data,both linear and exponential modification functions that account for grain size effects were integrated into the proposed criterion.The corresponding finite element algorithm has been implemented.The accuracy and applicability of the proposed criterion were validated by comparing with the experimental data.展开更多
The degradation characteristics of both wide and narrow devices under V _g= V _d/2 stress mode is investigated.The width-enhanced device degradation can be seen with devices narrowing.The main degradation mechanism is...The degradation characteristics of both wide and narrow devices under V _g= V _d/2 stress mode is investigated.The width-enhanced device degradation can be seen with devices narrowing.The main degradation mechanism is interface state generation for pMOSFETs with different channel width.The cause of the width-enhanced device degradation is attributed to the combination of width-enhanced threshold voltage and series resistance.展开更多
In this paper the coefficient and law of the size effect of RPC were studied through experiments and theoretical analysis. The size-effect coefficients for the compressive strength of RPC are deduced through experimen...In this paper the coefficient and law of the size effect of RPC were studied through experiments and theoretical analysis. The size-effect coefficients for the compressive strength of RPC are deduced through experiments.They indicate that RPC without fiber behaves quite the same as normal or high strength concrete.The size effect on compressive strength is more prominent in RPC containing fiber.Bazant's size effect formula of compressive strength applies to RPC.A formula is given to predict the compressive strength of cubic RPC specimens 100 mm on a side where the fiber dosage ranges from 0-2%.展开更多
Scale effect is one of the important aspects in the macro mechanical parame- ters’ research of rock mass, from a new point of view, by means of lab and field rock me- chanics test, establishment of E^Vp relation, cla...Scale effect is one of the important aspects in the macro mechanical parame- ters’ research of rock mass, from a new point of view, by means of lab and field rock me- chanics test, establishment of E^Vp relation, classification of engineering rock mass, nu- merical simulation test and back analysis based on surrounding rock’s displacement monitoring results of Shuibuya Project’s underground power station, rock mass deforma- tion module’s size effect of surrounding rock of Shuibuya Project’s undegroud power sta- tion was studied. It’s shown that rock mass deformation module’s scale effect of sur- rounding rock of Shuibuya Project’s undeground power station is obvious, the rock mass deformation module to tranquilization is 20% of intact rock’s. Finally the relation between rock mass deformation modules and the scale of research was established.展开更多
A series of compression tests were conducted on 150 groups of cement paste specimens with side lengths ranging from 40 mm to 200 mm. The specimens include cube specimens and prism specimens with height to width ratio ...A series of compression tests were conducted on 150 groups of cement paste specimens with side lengths ranging from 40 mm to 200 mm. The specimens include cube specimens and prism specimens with height to width ratio of 2. The experiment results show that size effect exists in the cubic compressive strength and prismatic compressive strength of the cement paste, and larger specimens resist less in terms of strength than smaller ones. The cubic compressive strength and the prismatic compressive strength of the specimens with side length of 200 mm are respectively about 91% and 89% of the compressive strength of the specimens with the side length of 40 mm. Water to binder ratio has a significant influence on the size effect of the compressive strengths of the cement paste. With a decrease in the water to binder ratio, the size effect is significantly enhanced. When the water to binder ratio is 0.2, the size effects of the cubic compressive strength and the prismatic compressive strength of the cement paste are 1.6 and 1.4 times stronger than those of a water to binder ratio of 0.6. Furthermore, a series of formulas are proposed to calculate the size effect of the cubic compressive strength and the prismatic compressive strength of cement paste, and the results of the size effect predicted by the formulas are in good agreement with the experiment results.展开更多
Acoustic wave propagation in piezoelectric crystals of classes 43m and 23 is studied. The crystals Tl3VS4 and Tl3TaSe4 (43m) of the Chalcogenide family and the crystal Bi12TiO20 (23) possess strong piezoelectric e...Acoustic wave propagation in piezoelectric crystals of classes 43m and 23 is studied. The crystals Tl3VS4 and Tl3TaSe4 (43m) of the Chalcogenide family and the crystal Bi12TiO20 (23) possess strong piezoelectric effect. Because the surface Bleustein-Gulyaev waves cannot exist in piezoelectric cubic crystals, it was concluded that new solutions for shear-horizontal surface acoustic waves (SH-SAWs) are found in the monocrystals using different electrical boundary conditions such as electrically "short" and "open" free-surfaces for the unique [ 101 ] direction of wave propagation. For the crystal Tl3TaSe4 with coefficient of electromechanical coupling (CEMC) Ke^2=e^2/(C×g)-1/3, the phase velocity Vph for the new SH-SAWs can be calculated with the following formula: Vph=(Vα+Vt)/2, where Vt is the speed of bulk SH-wave, Vt=Vt4(1+Ke^2)^1/2, Vα=αKVt4, αK=2[Ke(1+Ke^2)^1/2-Ke^2]^1/2, and Vt4=(C44/p)^1/2. It was found that the CEMC K2 evaluation for Tl3TaSe4 gave the value of K^2=2(Vf-Vm)/Vf-0.047 (-4.7%), where Vf-848 m/s and Vm-828 m/s are the new-SAW velocities for the free and metallized surfaces, respectively. This high value of KZ(Tl3TaSe4) is significantly greater than K2(Tl3VS4)-3% and about five times that of K2(Bi12YiO20).展开更多
In the early 1990 s, the Foundation for Science and Technology of Rio Grande do Sul State(CIENTEC)developed a pioneering study in Brazil, related to the simultaneous mining of multiple coal seams.One of the activities...In the early 1990 s, the Foundation for Science and Technology of Rio Grande do Sul State(CIENTEC)developed a pioneering study in Brazil, related to the simultaneous mining of multiple coal seams.One of the activities included detailed studies on the geomechanical characterization of materials present in the Irapua coal seam, under exploitation in the A-Sangao Mine, located near the city of Criciuma-SC,within the South-Catarinense coalfield. The goal of the laboratory tests was to define the behavior of the uniaxial compressive strength of the Irapua coal seam and establish a first approximation for the in situ strength value of this coal seam, since existing knowledge is solely based on practical mining experience over the years. Large samples of the coal seam were collected, using special techniques to maintain the integrity of the material, and a set of 56 uniaxial compression tests in cubic specimens, with side length ranging from 4.5 to 31 cm, were conducted in laboratory. This paper describes the experimental techniques used in the assays, and also presents the uniaxial compression strength results obtained.Moreover, important aspects of this type of study are considered, highlighting the size effect for the carbonaceous bed and the estimation of in situ strength values for the Irapua coal seam.展开更多
In the process of deep projects excavation,deep rock often experiences a full stress process from high stress to unloading and then to impact disturbance failure.To study the dynamic characteristics of three-dimension...In the process of deep projects excavation,deep rock often experiences a full stress process from high stress to unloading and then to impact disturbance failure.To study the dynamic characteristics of three-dimensional high stressed red sandstone subjected to unloading and impact loads,impact compression tests were conducted on red sandstone under confining pressure unloading conditions using a modified split Hopkinson pressure bar.Impact disturbance tests of uniaxial pre-stressed rock were also conducted(without considering confining pressure unloading effect).The results demonstrate that the impact compression strength of red sandstone shows an obvious strain rate effect.With an approximately equal strain rate,the dynamic strength of red sandstone under confining unloading conditions is less than that in the uniaxial pre-stressed impact compression test.Confining pressure unloading produces a strength-weakening effect,and the dynamic strength weakening factor(DSWF)is also defined.The results also indicate that the strain rate of the rock and the incident energy change in a logarithmic relation.With similar incident energies,unloading results in a higher strain rate in pre-stressed rock.According to the experimental analysis,unloading does not affect the failure mode,but reduces the dynamic strength of pre-stressed rock.The influence of confining pressure unloading on the shear strength parameters(cohesion and friction angle)is discussed.Under the same external energy impact compression,prestressed rock subjected to unloading is more likely to be destroyed.Thus,the effect of unloading on the rock mechanical characteristics should be considered in deep rock project excavation design.展开更多
This study aimed to elucidate the strength weakening effect of high static pre-stressed rocks subjected to low-frequency disturbances under uniaxial compression.Based on the uniaxial compressive strength(UCS)of granit...This study aimed to elucidate the strength weakening effect of high static pre-stressed rocks subjected to low-frequency disturbances under uniaxial compression.Based on the uniaxial compressive strength(UCS)of granite under static loading,70%,80%,and 90%of UCS were selected as the initial high static pre-stress(σ_(p)),and then the pre-stressed rock specimens were disturbed by sinusoidal stress with amplitudes of 30%,20%,and 10%of UCS under low-frequency frequencies(f)of 1,2,5,and 10 Hz,respectively.The results show that the rockburst failure of pre-stressed granite is caused by low-frequency disturbance,and the failure strength is much lower than UCS.When theσp or f is constant,the specimen strength gradually decreases as the f or σ_(p) increases.The experimental study illustrates the influence mechanism of the strength weakening effect of high static pre-stress rocks under low-frequency dynamic disturbance,that is,high static pre-stress is the premise and leading factor of rock strength weakening,while low-frequency dynamic disturbance induces rock failure and affects the strength weakening degree.展开更多
Optofluidics is the integration of optics and microfluidics(so-called lab on the chip). Wherein the actuation of liquid is a key technic. In a variety of methods for controlling microscale liquid, the light actuation ...Optofluidics is the integration of optics and microfluidics(so-called lab on the chip). Wherein the actuation of liquid is a key technic. In a variety of methods for controlling microscale liquid, the light actuation is particularly interesting. The light actuation offers a novel way to control the flow of fluids for biomedical and biotechnological applications, etc.. The complexity and cost of devices sometimes may be greatly reduced by using complete optical control and may be more flexible in operation than other methods. However the light actuation of liquid is a burgeoning field as well as optofluidics. There is lots of work to do. Here we systematically describe four mechanisms for the light actuation of liquid based on the following points: optoelectrowetting, photothermal effect, radiation pressure, photosensitive substance.展开更多
The uniaxial compression tests of cylinder standard specimens and different dimension cube specimens of No.13 coal seam of Jianxin Colliery were carried out using MTS, and the basic mechanics parameters of Jianxin Col...The uniaxial compression tests of cylinder standard specimens and different dimension cube specimens of No.13 coal seam of Jianxin Colliery were carried out using MTS, and the basic mechanics parameters of Jianxin Colliery 13 coal were studied. The dimension-form effect of uniaxial compression strength was analyzed. The exponent formula σc=6.928+130.269 8 exp(-0.105 95D)of dimension effect was fitted. While the side length of specimen reaches 80 mm, its unaxial strength tends to a stable value which is called to be the strength of coal mass. Studies indicates that since the cube specimen suffered more shake than the cylinder one during machining and processing and the stress is centralized at four corners of cube during compressive experiment, the coal strength of standard cylinder specimen is higher than that of cube one.展开更多
The commonly used Mohr-Coulomb(M-C) failure condition has a limitation that it overestimates the tensile strength of cohesive soils. To overcome this limitation, the tensile strength cut-off was applied where the pred...The commonly used Mohr-Coulomb(M-C) failure condition has a limitation that it overestimates the tensile strength of cohesive soils. To overcome this limitation, the tensile strength cut-off was applied where the predicted tensile strength is reduced or eliminated. This work then presented a kinematical approach to evaluate the active earth pressure on subgrade retaining walls in cohesive backfills with saturated seepage effects. An effective rotational failure mechanism was constructed assuming an associative flow rule. The impact of seepage forces, whose distribution is described by a closed-form solution, was incorporated into the analysis. The thrust of active earth pressure was derived from the energy conservation equation, and an optimization program was then coded to obtain the most critical solution. Several sets of charts were produced to perform a parameter analysis. The results show that taking soil cohesion into account has a distinct beneficial influence on the stability of retaining walls, while seepage forces have an adverse effect. The active earth pressure increases when tensile strength cut-off is considered, and this increment is more noticeable under larger cohesion.展开更多
基金Project(2023YFC2907403)supported by the National Key R&D Program of ChinaProject(52074021)supported by the National Natural Science Foundation of China+1 种基金Project(2242045)supported by Beijing Natural Science Foundation,ChinaProject(ZD202216)supported by the Beijing Association of Higher Education,China。
文摘The macroscopic mechanical properties of rocks are significantly influenced by their microstructure.As a material bonded by mineral grains,the grain morphology of crystalline rock is the primary factor influencing the strength.However,most strength criteria neglect the strength variations caused by different grain characteristics in rocks.Furthermore,the traditional linear criteria tend to overestimate tensile strength and exhibit apex singularity.To address these shortcomings,a piecewise strength criterion that considers the grain size effect has been proposed.A part of an ellipse was employed to construct the envelope of the tensive-shear region on the meridian plane,to accurately reproduce the low tensile-compressive strength ratio.Based on the analysis of experimental data,both linear and exponential modification functions that account for grain size effects were integrated into the proposed criterion.The corresponding finite element algorithm has been implemented.The accuracy and applicability of the proposed criterion were validated by comparing with the experimental data.
文摘The degradation characteristics of both wide and narrow devices under V _g= V _d/2 stress mode is investigated.The width-enhanced device degradation can be seen with devices narrowing.The main degradation mechanism is interface state generation for pMOSFETs with different channel width.The cause of the width-enhanced device degradation is attributed to the combination of width-enhanced threshold voltage and series resistance.
基金Project 50508005 supported by the National Natural Science Foundations of China
文摘In this paper the coefficient and law of the size effect of RPC were studied through experiments and theoretical analysis. The size-effect coefficients for the compressive strength of RPC are deduced through experiments.They indicate that RPC without fiber behaves quite the same as normal or high strength concrete.The size effect on compressive strength is more prominent in RPC containing fiber.Bazant's size effect formula of compressive strength applies to RPC.A formula is given to predict the compressive strength of cubic RPC specimens 100 mm on a side where the fiber dosage ranges from 0-2%.
文摘Scale effect is one of the important aspects in the macro mechanical parame- ters’ research of rock mass, from a new point of view, by means of lab and field rock me- chanics test, establishment of E^Vp relation, classification of engineering rock mass, nu- merical simulation test and back analysis based on surrounding rock’s displacement monitoring results of Shuibuya Project’s underground power station, rock mass deforma- tion module’s size effect of surrounding rock of Shuibuya Project’s undegroud power sta- tion was studied. It’s shown that rock mass deformation module’s scale effect of sur- rounding rock of Shuibuya Project’s undeground power station is obvious, the rock mass deformation module to tranquilization is 20% of intact rock’s. Finally the relation between rock mass deformation modules and the scale of research was established.
基金Project(51408213)supported by the National Natural Science Foundation of China
文摘A series of compression tests were conducted on 150 groups of cement paste specimens with side lengths ranging from 40 mm to 200 mm. The specimens include cube specimens and prism specimens with height to width ratio of 2. The experiment results show that size effect exists in the cubic compressive strength and prismatic compressive strength of the cement paste, and larger specimens resist less in terms of strength than smaller ones. The cubic compressive strength and the prismatic compressive strength of the specimens with side length of 200 mm are respectively about 91% and 89% of the compressive strength of the specimens with the side length of 40 mm. Water to binder ratio has a significant influence on the size effect of the compressive strengths of the cement paste. With a decrease in the water to binder ratio, the size effect is significantly enhanced. When the water to binder ratio is 0.2, the size effects of the cubic compressive strength and the prismatic compressive strength of the cement paste are 1.6 and 1.4 times stronger than those of a water to binder ratio of 0.6. Furthermore, a series of formulas are proposed to calculate the size effect of the cubic compressive strength and the prismatic compressive strength of cement paste, and the results of the size effect predicted by the formulas are in good agreement with the experiment results.
文摘Acoustic wave propagation in piezoelectric crystals of classes 43m and 23 is studied. The crystals Tl3VS4 and Tl3TaSe4 (43m) of the Chalcogenide family and the crystal Bi12TiO20 (23) possess strong piezoelectric effect. Because the surface Bleustein-Gulyaev waves cannot exist in piezoelectric cubic crystals, it was concluded that new solutions for shear-horizontal surface acoustic waves (SH-SAWs) are found in the monocrystals using different electrical boundary conditions such as electrically "short" and "open" free-surfaces for the unique [ 101 ] direction of wave propagation. For the crystal Tl3TaSe4 with coefficient of electromechanical coupling (CEMC) Ke^2=e^2/(C×g)-1/3, the phase velocity Vph for the new SH-SAWs can be calculated with the following formula: Vph=(Vα+Vt)/2, where Vt is the speed of bulk SH-wave, Vt=Vt4(1+Ke^2)^1/2, Vα=αKVt4, αK=2[Ke(1+Ke^2)^1/2-Ke^2]^1/2, and Vt4=(C44/p)^1/2. It was found that the CEMC K2 evaluation for Tl3TaSe4 gave the value of K^2=2(Vf-Vm)/Vf-0.047 (-4.7%), where Vf-848 m/s and Vm-828 m/s are the new-SAW velocities for the free and metallized surfaces, respectively. This high value of KZ(Tl3TaSe4) is significantly greater than K2(Tl3VS4)-3% and about five times that of K2(Bi12YiO20).
文摘In the early 1990 s, the Foundation for Science and Technology of Rio Grande do Sul State(CIENTEC)developed a pioneering study in Brazil, related to the simultaneous mining of multiple coal seams.One of the activities included detailed studies on the geomechanical characterization of materials present in the Irapua coal seam, under exploitation in the A-Sangao Mine, located near the city of Criciuma-SC,within the South-Catarinense coalfield. The goal of the laboratory tests was to define the behavior of the uniaxial compressive strength of the Irapua coal seam and establish a first approximation for the in situ strength value of this coal seam, since existing knowledge is solely based on practical mining experience over the years. Large samples of the coal seam were collected, using special techniques to maintain the integrity of the material, and a set of 56 uniaxial compression tests in cubic specimens, with side length ranging from 4.5 to 31 cm, were conducted in laboratory. This paper describes the experimental techniques used in the assays, and also presents the uniaxial compression strength results obtained.Moreover, important aspects of this type of study are considered, highlighting the size effect for the carbonaceous bed and the estimation of in situ strength values for the Irapua coal seam.
基金Projects(42077244,41877272)supported by the National Natural Science Foundation of ChinaProject(2020-05)supported by the Open Research Fund of Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization,China。
文摘In the process of deep projects excavation,deep rock often experiences a full stress process from high stress to unloading and then to impact disturbance failure.To study the dynamic characteristics of three-dimensional high stressed red sandstone subjected to unloading and impact loads,impact compression tests were conducted on red sandstone under confining pressure unloading conditions using a modified split Hopkinson pressure bar.Impact disturbance tests of uniaxial pre-stressed rock were also conducted(without considering confining pressure unloading effect).The results demonstrate that the impact compression strength of red sandstone shows an obvious strain rate effect.With an approximately equal strain rate,the dynamic strength of red sandstone under confining unloading conditions is less than that in the uniaxial pre-stressed impact compression test.Confining pressure unloading produces a strength-weakening effect,and the dynamic strength weakening factor(DSWF)is also defined.The results also indicate that the strain rate of the rock and the incident energy change in a logarithmic relation.With similar incident energies,unloading results in a higher strain rate in pre-stressed rock.According to the experimental analysis,unloading does not affect the failure mode,but reduces the dynamic strength of pre-stressed rock.The influence of confining pressure unloading on the shear strength parameters(cohesion and friction angle)is discussed.Under the same external energy impact compression,prestressed rock subjected to unloading is more likely to be destroyed.Thus,the effect of unloading on the rock mechanical characteristics should be considered in deep rock project excavation design.
基金financially supported by the National Natural Science Foundation of China (No.42077244)the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences (No.Z020005)the Fundamental Research Funds for the Central Universities of Southeast University,China (No.2242021R10080)。
文摘This study aimed to elucidate the strength weakening effect of high static pre-stressed rocks subjected to low-frequency disturbances under uniaxial compression.Based on the uniaxial compressive strength(UCS)of granite under static loading,70%,80%,and 90%of UCS were selected as the initial high static pre-stress(σ_(p)),and then the pre-stressed rock specimens were disturbed by sinusoidal stress with amplitudes of 30%,20%,and 10%of UCS under low-frequency frequencies(f)of 1,2,5,and 10 Hz,respectively.The results show that the rockburst failure of pre-stressed granite is caused by low-frequency disturbance,and the failure strength is much lower than UCS.When theσp or f is constant,the specimen strength gradually decreases as the f or σ_(p) increases.The experimental study illustrates the influence mechanism of the strength weakening effect of high static pre-stress rocks under low-frequency dynamic disturbance,that is,high static pre-stress is the premise and leading factor of rock strength weakening,while low-frequency dynamic disturbance induces rock failure and affects the strength weakening degree.
基金Fund of Nanjing University of Posts & Telecommunications(NY206076)
文摘Optofluidics is the integration of optics and microfluidics(so-called lab on the chip). Wherein the actuation of liquid is a key technic. In a variety of methods for controlling microscale liquid, the light actuation is particularly interesting. The light actuation offers a novel way to control the flow of fluids for biomedical and biotechnological applications, etc.. The complexity and cost of devices sometimes may be greatly reduced by using complete optical control and may be more flexible in operation than other methods. However the light actuation of liquid is a burgeoning field as well as optofluidics. There is lots of work to do. Here we systematically describe four mechanisms for the light actuation of liquid based on the following points: optoelectrowetting, photothermal effect, radiation pressure, photosensitive substance.
文摘The uniaxial compression tests of cylinder standard specimens and different dimension cube specimens of No.13 coal seam of Jianxin Colliery were carried out using MTS, and the basic mechanics parameters of Jianxin Colliery 13 coal were studied. The dimension-form effect of uniaxial compression strength was analyzed. The exponent formula σc=6.928+130.269 8 exp(-0.105 95D)of dimension effect was fitted. While the side length of specimen reaches 80 mm, its unaxial strength tends to a stable value which is called to be the strength of coal mass. Studies indicates that since the cube specimen suffered more shake than the cylinder one during machining and processing and the stress is centralized at four corners of cube during compressive experiment, the coal strength of standard cylinder specimen is higher than that of cube one.
基金Projects(51538009,51674115,51804113) supported by the National Natural Science Foundation of China。
文摘The commonly used Mohr-Coulomb(M-C) failure condition has a limitation that it overestimates the tensile strength of cohesive soils. To overcome this limitation, the tensile strength cut-off was applied where the predicted tensile strength is reduced or eliminated. This work then presented a kinematical approach to evaluate the active earth pressure on subgrade retaining walls in cohesive backfills with saturated seepage effects. An effective rotational failure mechanism was constructed assuming an associative flow rule. The impact of seepage forces, whose distribution is described by a closed-form solution, was incorporated into the analysis. The thrust of active earth pressure was derived from the energy conservation equation, and an optimization program was then coded to obtain the most critical solution. Several sets of charts were produced to perform a parameter analysis. The results show that taking soil cohesion into account has a distinct beneficial influence on the stability of retaining walls, while seepage forces have an adverse effect. The active earth pressure increases when tensile strength cut-off is considered, and this increment is more noticeable under larger cohesion.