Heat pipe is always bent in the typical application of electronic heat dissipation at high heat flux,which greatly affects its heat transfer performance. The capillary limit of heat transport in the bent micro-grooved...Heat pipe is always bent in the typical application of electronic heat dissipation at high heat flux,which greatly affects its heat transfer performance. The capillary limit of heat transport in the bent micro-grooved heat pipes was analyzed in the vapor pressure drop,the liquid pressure drop and the interaction of the vapor with wick fluid. The bent heat pipes were fabricated and tested from the bending angle,the bending position and the bending radius. The results show that temperature difference and thermal resistance increase while the heat transfer capacity of the heat pipe decreases,with the increase of the bending angles and the bending position closer to the vapor section. However,the effects of bending radius can be ignored. The result agrees well with the predicted equations.展开更多
Based on the new modified couple stress theory and considering the flexoelectric effect of the piezoelectric layers,the Euler Bernoulli nano-beam model of composite laminated materials driven by electrostatically fixe...Based on the new modified couple stress theory and considering the flexoelectric effect of the piezoelectric layers,the Euler Bernoulli nano-beam model of composite laminated materials driven by electrostatically fixed supports at both ends is established. The nonlinear differential governing equations and boundary conditions are derived by the Hamilton principle. The generalized differential quadrature method(GDQM) and the Newton Raphson method are used to numerically solve the differential governing equations. The influence of flexoelectric effect on the static and the dynamic pull-in characteristics of laminated nano-beams is analyzed. The results of the numerical calculation are in a good agreement with those in the literature when the model degenerated into a nanobeam model without flexoelectric effect. The stacking sequence,length scale parameter l and piezoelectric layer applied voltage V_(p) of the composite will affect the pull-in voltage,frequency and time-domain response of the structure. Given that the flexoelectric effect will reduce the pull-in voltage and dimensionless natural frequency of the structure,the maximum dimensionless displacement at the midpoint of the beam and the period of time-domain response should be increased.展开更多
基金Project(U0834002) supported by the Joint Funds of the National Nature Science Foundation of China and Guangdong ProvinceProject (2009ZM0134) supported by the Foundational Research Funds for the Central Universities in China
文摘Heat pipe is always bent in the typical application of electronic heat dissipation at high heat flux,which greatly affects its heat transfer performance. The capillary limit of heat transport in the bent micro-grooved heat pipes was analyzed in the vapor pressure drop,the liquid pressure drop and the interaction of the vapor with wick fluid. The bent heat pipes were fabricated and tested from the bending angle,the bending position and the bending radius. The results show that temperature difference and thermal resistance increase while the heat transfer capacity of the heat pipe decreases,with the increase of the bending angles and the bending position closer to the vapor section. However,the effects of bending radius can be ignored. The result agrees well with the predicted equations.
文摘Based on the new modified couple stress theory and considering the flexoelectric effect of the piezoelectric layers,the Euler Bernoulli nano-beam model of composite laminated materials driven by electrostatically fixed supports at both ends is established. The nonlinear differential governing equations and boundary conditions are derived by the Hamilton principle. The generalized differential quadrature method(GDQM) and the Newton Raphson method are used to numerically solve the differential governing equations. The influence of flexoelectric effect on the static and the dynamic pull-in characteristics of laminated nano-beams is analyzed. The results of the numerical calculation are in a good agreement with those in the literature when the model degenerated into a nanobeam model without flexoelectric effect. The stacking sequence,length scale parameter l and piezoelectric layer applied voltage V_(p) of the composite will affect the pull-in voltage,frequency and time-domain response of the structure. Given that the flexoelectric effect will reduce the pull-in voltage and dimensionless natural frequency of the structure,the maximum dimensionless displacement at the midpoint of the beam and the period of time-domain response should be increased.