The distribution of magnetic forces and current on sheet and coil was analyzed in detail according to the structural parameter of the coil which was invalid.The result shows that the current direction based on simulat...The distribution of magnetic forces and current on sheet and coil was analyzed in detail according to the structural parameter of the coil which was invalid.The result shows that the current direction based on simulation result agrees with the principles of uniform pressure electromagnetic actuator.The reason for coil failure was proposed.Then the magnetic forces on the sheet were input into an explicit finite element software ANSYS/LS-DYNA to analyze the deformation law of the sheet.展开更多
Hydrodynamic deep drawing assisted by radial pressure is an advanced sheet forming technology with great advantages such as higher drawing ratio, good surface quality and higher dimensional accuracy. In this process, ...Hydrodynamic deep drawing assisted by radial pressure is an advanced sheet forming technology with great advantages such as higher drawing ratio, good surface quality and higher dimensional accuracy. In this process, both the bottom surface and the peripheral edge of sheets are under hydrodynamic pressure, so that the forming procedure is more uniform with low failure probability. Multi-layered sheets with complex geometries could be formed more easily with this technique compared with other traditional methods. Rupture is the main irrecoverable failure form in sheet forming processes. Prediction of rupture occurrence is of great importance for determining and optimizing the proper process parameters. In this research, a theoretical model was proposed to calculate the critical rupture pressure in production of double layered conical parts with hydrodynamic deep drawing process assisted by radial pressure. The effects of other process parameters on critical rupture pressure, such as punch tip radius, drawing ratio, coefficient of friction, sheet thickness and material properties were also discussed. The proposed model was compared with finite element simulation and validated by experiments on Al1050/St13 double layered sheets, where a good agreement was found with analytical results.展开更多
In order to investigate the effects of different geometrical parameters and pretightening loads on failure mode and bearing strength,a large number of single-bolted T300/QY8911 composite laminates were tested under st...In order to investigate the effects of different geometrical parameters and pretightening loads on failure mode and bearing strength,a large number of single-bolted T300/QY8911 composite laminates were tested under static tension load.Box-plot was used to extract the singular testing values of bearing strength and effective statistical values were obtained.T-test method of independent samples was used to study how much pretightening loads influence bearing strength.The results show that the geometrical parameters,such as ratios of width to hole diameter(w/d) and edge distance to hole diameter(e/d),remarkably influence failure mode and bearing strength.Net-section failure will occur when w/d is smaller than 4,and shear-out failure will occur when e/d is smaller than 2.Bearing failure or bearing and shear-out combined failure will occur when w/d is greater than 4 and e/d is greater than 2.There is an optimal combination of geometrical parameters to achieve the highest bearing strength.For most of specimens,pretightening loads do not explicitly influence bearing strength.展开更多
The basic characteristics of the soft rock roadway under the dynamic pressure are analyzed. At the same time, the three fundamental approaches for controlling the surrounding rock are proposed, which are improving the...The basic characteristics of the soft rock roadway under the dynamic pressure are analyzed. At the same time, the three fundamental approaches for controlling the surrounding rock are proposed, which are improving the surrounding rock strength, lowering the rock mass stress and selecting the reasonable supporting technology. The research results are elucidated, including the distribution of the surrounding rock plastic zone, the movement and damage of the surrounding rock under the dynamic pressure, controlling the floor heave through reinforcing the roadway walls and corners, the new route to develop the roadway metal supporting technique, the key theory and technique for the bolt supporting in the coal roadway, the performance and prospect of the ZKD high water content quick setting material, and so on. Finally, some personally views are put forward about the roadway metal supporting, bolt supporting, new material and the stress relief under the high stress condition.展开更多
In the analysis of a structure subjected to an explosion event, the determination of the blast load constitutes a crucial step. The effect of the blast load on the structure depends not only on the peak shock overpres...In the analysis of a structure subjected to an explosion event, the determination of the blast load constitutes a crucial step. The effect of the blast load on the structure depends not only on the peak shock overpressure, but also the impulse (hence the duration). For structures with a regular geometry, the blast load may be fairly well estimated using appropriate empirical formulae; however, for more complex situations, a direct simulation using appropriate computational techniques is necessary. This paper presents a numerical simulation study on the prediction of the blast load in free air using a hydrocode, with focus on the sensitivity of the simulated blast load to the mesh grid size. The simulation results are compared with empirical predictions. It is found that the simulated blast load is sensitive to the mesh size, especially in the close-in range, and with a practically affordable mesh grid density, the blast load tends to be systematically underestimated. The study is extended to internal blast cases. An example concrete slab under internal explosion is analyzed using a coupled analysis scheme. The internal blast load from the simulation is examined and the response of the RC slab is commented.展开更多
The hardening curve for sheet metal can be determined from the load-displacement curve of tensile specimen with rectangular cross-section. Therefore,uniaxial compression test on cylinder specimen made from laminated s...The hardening curve for sheet metal can be determined from the load-displacement curve of tensile specimen with rectangular cross-section. Therefore,uniaxial compression test on cylinder specimen made from laminated sample is put forward. Considering the influence of anisotropy on hardening properties and the stress state in popular forming process,plane strain compression test on cubic specimen made from laminated sample was advanced. Results show that the deformation range of hardening curves obtained from the presented methods is wide,which meets the need for the application in sheet metal forming processes. In view of the characteristics of methods presented in the paper and the stress strain state of various forming processes,the adaptability of the two methods presented in this paper is given.展开更多
As one of the advanced and efficient means of joining,the clinching process is capable of joining sheets with different materials or different sheet thicknesses.In this article,a novel modified clinching process,i.e.,...As one of the advanced and efficient means of joining,the clinching process is capable of joining sheets with different materials or different sheet thicknesses.In this article,a novel modified clinching process,i.e.,the dieless clinching process,was executed to join AA6061 aluminum alloy with sheet thicknesses of 1.5,2.0,2.5 and 3.0 mm according to different sheet stack-ups.The geometrical characteristics,microhardness distribution,failure behavior,static strength,absorbed energy and instantaneous stiffness of the novel dieless joint were gotten and investigated.The results indicated that the sheet thickness ratio has a notable effect on the failure behavior and mechanical properties of the novel dieless clinched joint,and a relatively large sheet thickness ratio can improve the joint performance when joining sheets with different sheet thicknesses.展开更多
The integrated structure parts are widely used in aircraft. The distortion caused by residual stresses in thick pre-stretched aluminum plates during machining integrated parts is a common and serious problem. To predi...The integrated structure parts are widely used in aircraft. The distortion caused by residual stresses in thick pre-stretched aluminum plates during machining integrated parts is a common and serious problem. To predict and control the machining distortion, the residual stress distribution in the thick plate must be measured firstly. The modified removal method for measuring residual stress in thick pre-stretched aluminum plates is proposed and the stress-strain relation matrix is deduced by elasticity theory. The residual stress distribution in specimen of 7050T7451 plate is measured by using the method, and measurement results are analyzed and compared with data obtained by other methods. The method is effective to measure the residual stress.展开更多
This article examines the interaction of multiple cracks in an infinite plate by using a numerical method. The numerical method consists of the non-singular displacement discontinuity element presented by Crouch and S...This article examines the interaction of multiple cracks in an infinite plate by using a numerical method. The numerical method consists of the non-singular displacement discontinuity element presented by Crouch and Startled and the crack tip displacement discontinuity elements proposed by the author. In the numerical method implementation, the left or the right crack tip element is placed locally at the corresponding left or right crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. The numerical method is called a hybrid displacement discontinuity method. The following test examples of crack problems in an infinite plate under tension are included: “ center-inclined cracked plate”, “interaction of two collinear cracks with equal length”, “interaction of three collinear cracks with equal length”, “interaction of two parallel cracks with equal length”, and “interaction of one horizontal crack and one inclined crack”. The present numerical results show that the numerical method is simple yet very accurate for analyzing the interaction of multiple cracks in an infinite plate.展开更多
Taking Adaohai Coal Mine as the example, underground pressure appearance laws of fully mechanized top coal slice caving on high-dipping and thick coal seams. Through site visit, theoretical analysis and discrete eleme...Taking Adaohai Coal Mine as the example, underground pressure appearance laws of fully mechanized top coal slice caving on high-dipping and thick coal seams. Through site visit, theoretical analysis and discrete element calculation, the research shows that, as the mining deepens, underground stress of lower sublevels is more obvious and higher than that of upper sublevels and is higher in the air return roadway than that in the air intake roadway in the area that is near to the top coal. Because the top coal is thick and gangue is caved above the support, underground pressure to the working face is relatively gentle. Immediate roof will mainly fall down along the floor. Main roof and the rock bed above the main roof will move to the mined out area along the fault in the early stage and then fall down with the mined out area later. In addition, roof pressure mainly periodically appears in two directions along the trend and the dip.展开更多
A VBHF(Variable Blank Holder Force) optimization strategy was employed to determine the optimal time-variable and spatial-variable BHF trajectories,aiming at improving the formability of automobile panels with aluminu...A VBHF(Variable Blank Holder Force) optimization strategy was employed to determine the optimal time-variable and spatial-variable BHF trajectories,aiming at improving the formability of automobile panels with aluminum alloy sheet.The strategy was implemented based on adaptive simulation to calculate the critical wrinkling BHF for each segmented binder of the Numisheet' 05 deck lid in a single round of simulation.The thickness comparison of the stamped part under optimal VBHF and constant BHF shows that the variance of the four sections is decreased by 70%,44%,64% and 61%,respectively,which indicates significant improvement in thickness distribution and variation control.The investigation through strain path comparison reveals the fundamental reason of formability improvement.The study proves the applicability of the new VBHF optimization strategy to complex parts with aluminum alloy sheet.展开更多
Hot granule medium pressure forming (HGMF) process is a new process in which granule medium replaces the medium in existing flexible-die hot forming process, such as liquids, gases or viscous medium. Hot forming of ...Hot granule medium pressure forming (HGMF) process is a new process in which granule medium replaces the medium in existing flexible-die hot forming process, such as liquids, gases or viscous medium. Hot forming of light alloy sheet parts can be realized based on the properties of granule medium, such as withstanding high temperature and pressure, filling well, sealing and loading easily. In this work, the forming of AA7075 cylindrical parts by HGMF process is taken as an example to establish the constitutive relation and forming limit diagram (FLD) of AA7075 sheet which is related to temperature by hot uniaxial tensile test of sheet metal. Based on the assumption that granule medium is applied to extended Drucker-Prager linear material model, the finite element model of HGMF process is established and the effect of technological parameters, such as forming temperature, blank-holder gap and drawing ratio, on the sheet metal formability, is studied. The limit drawing ratio curve of AA7075 cylindrical parts at forming temperature of 175-300 ℃ is obtained by HGMF process test, and the limit drawing ratio reaches the maximum value of 1.71 at 250 ℃. The results of numerical simulation are consistent with the results of process test, and the forming force, distribution of wall thichness and form of instability are predicted correctly, which provides reference for the application of HGMF process.展开更多
Lots of field investigations have proven that layer-crack structure usually appears during the excavation process of deep rock or coal mass.To provide experimental data for studying the formation mechanism of layer-cr...Lots of field investigations have proven that layer-crack structure usually appears during the excavation process of deep rock or coal mass.To provide experimental data for studying the formation mechanism of layer-crack structure,this study researches the influence of lateral pressure on the mechanical behavior of different rock types.Four rock types have been tested and the formation mechanism of macro-fracture surface is analyzed.Results indicate that the brittleness and burst proneness of rock or coal material are stronger than that of gypsum material due to the different mineral compositions and structures.When the lateral pressure is less than 10%uniaxial strength,the peak stress and elastic modulus increase with the increase of lateral pressure;but when the lateral pressure is larger than 10%uniaxial strength,the two parameters decrease slightly or keep steady.This is because when the lateral pressure reaches a certain value,local failure will be formed during the process of applying lateral pressure.Under the condition of low lateral pressure,the failure of the specimen is dominated by the tensile mechanism;under the condition of relatively high lateral pressure,the area of the specimen close to the free surface is tensile splitting failure,and the area far from the free surface is shear failure.展开更多
To clarify and control the collapse and weighting of main roof in longwall mining is one of the important research problems in ground control. Based on the results of physical model experiment and field measurement, t...To clarify and control the collapse and weighting of main roof in longwall mining is one of the important research problems in ground control. Based on the results of physical model experiment and field measurement, the behaviour of main roof above trapezoidal goaf or with fault is studied in this paper. The fracture and weighting of main roof above trapezoidal goaf are different from those above rectangular goaf. It depends on the mechanical relation between main roof blocks whether the plate blocks of main roof on both sides of fault simultaneously break and collapse.展开更多
Nonlinear static analysis of piezoelectric plates has been carried out using nonlinear finite element method considering electro-mechanical coupling,The geometrical nonlinearity has been taken into account and electri...Nonlinear static analysis of piezoelectric plates has been carried out using nonlinear finite element method considering electro-mechanical coupling,The geometrical nonlinearity has been taken into account and electric potential is assumed to be quadratic across the plate thickness,The governing equations are obtained using potential energy and Hamilton's principle that includes elastic and piezoelectric effects.The finite element model is derived based on constitutive equation of piezoelectric material accounting for coupling between elasticity and electric effect using higher order plate elements,Results are presented for piezoelectric plate under different mechanical boundary conditions,Numerical results for the plate are given in dimensionless graphical forms.Effects of boundary conditions on linear and nonlinear response of the plate are also studied.The numerical results obtained by the present model are in good agreement with the available solutions reported in the literature.展开更多
Roof and rib instability is an important issue in underground mining. To optimize ground support design,enhance ground stability, and reduce the possibility of roof or rib failure with minimal use of artificial ground...Roof and rib instability is an important issue in underground mining. To optimize ground support design,enhance ground stability, and reduce the possibility of roof or rib failure with minimal use of artificial ground support, it is essential to have an accurate understanding of ground conditions. This includes the location of voids, cracks, and discontinuities, as well as information about the different strata in the immediate roof. This paper briefly introduces ongoing research on void detection by using the roof bolter feed and rotation pressure. The goal of this project is to improve the sensitivity of detection programs to locate smaller joints and reduce the number of false alarms. This paper presents a brief review of the testing procedures, data analysis, logic, and algorithms used for void detection. In addition, this paper discusses the results of preliminary laboratory tests and statistical analysis of the data from these two drilling parameters used for void detection.展开更多
The forms of roof break,roof fall,and effects of the region scope in a fully mechanizedtop-coal caving (FMTC) face of the 101 fully-mechanized top coal caving face ofthe Tingnan Coalmine were analyzed by UDEC and FLAC...The forms of roof break,roof fall,and effects of the region scope in a fully mechanizedtop-coal caving (FMTC) face of the 101 fully-mechanized top coal caving face ofthe Tingnan Coalmine were analyzed by UDEC and FLAC^(3D) software.The analysis resultconfirms the phenomenon of roof falling,roof-off-strata,roof breaking,first weighting,periodicweighting and stress concentration,redistributions of surrounding rock and so on.Itprovides the gist to analyze the law of roof movement,characteristic of confining pressure,and to determine the formative structure forms of the immediate roof and main roof duringthe caving process.These results and the underground pressure observation results are inagreement.展开更多
基金Project (50875093) supported by the National Natural Science Foundation of China
文摘The distribution of magnetic forces and current on sheet and coil was analyzed in detail according to the structural parameter of the coil which was invalid.The result shows that the current direction based on simulation result agrees with the principles of uniform pressure electromagnetic actuator.The reason for coil failure was proposed.Then the magnetic forces on the sheet were input into an explicit finite element software ANSYS/LS-DYNA to analyze the deformation law of the sheet.
文摘Hydrodynamic deep drawing assisted by radial pressure is an advanced sheet forming technology with great advantages such as higher drawing ratio, good surface quality and higher dimensional accuracy. In this process, both the bottom surface and the peripheral edge of sheets are under hydrodynamic pressure, so that the forming procedure is more uniform with low failure probability. Multi-layered sheets with complex geometries could be formed more easily with this technique compared with other traditional methods. Rupture is the main irrecoverable failure form in sheet forming processes. Prediction of rupture occurrence is of great importance for determining and optimizing the proper process parameters. In this research, a theoretical model was proposed to calculate the critical rupture pressure in production of double layered conical parts with hydrodynamic deep drawing process assisted by radial pressure. The effects of other process parameters on critical rupture pressure, such as punch tip radius, drawing ratio, coefficient of friction, sheet thickness and material properties were also discussed. The proposed model was compared with finite element simulation and validated by experiments on Al1050/St13 double layered sheets, where a good agreement was found with analytical results.
基金Project(51175424)supported by the National Natural Science Foundation of ChinaProject(B07050)supported by‘111’Program of ChinaProject(JC20110257)supported by the Basic Research Foundation of Northwestern Polytechnical University,China
文摘In order to investigate the effects of different geometrical parameters and pretightening loads on failure mode and bearing strength,a large number of single-bolted T300/QY8911 composite laminates were tested under static tension load.Box-plot was used to extract the singular testing values of bearing strength and effective statistical values were obtained.T-test method of independent samples was used to study how much pretightening loads influence bearing strength.The results show that the geometrical parameters,such as ratios of width to hole diameter(w/d) and edge distance to hole diameter(e/d),remarkably influence failure mode and bearing strength.Net-section failure will occur when w/d is smaller than 4,and shear-out failure will occur when e/d is smaller than 2.Bearing failure or bearing and shear-out combined failure will occur when w/d is greater than 4 and e/d is greater than 2.There is an optimal combination of geometrical parameters to achieve the highest bearing strength.For most of specimens,pretightening loads do not explicitly influence bearing strength.
文摘The basic characteristics of the soft rock roadway under the dynamic pressure are analyzed. At the same time, the three fundamental approaches for controlling the surrounding rock are proposed, which are improving the surrounding rock strength, lowering the rock mass stress and selecting the reasonable supporting technology. The research results are elucidated, including the distribution of the surrounding rock plastic zone, the movement and damage of the surrounding rock under the dynamic pressure, controlling the floor heave through reinforcing the roadway walls and corners, the new route to develop the roadway metal supporting technique, the key theory and technique for the bolt supporting in the coal roadway, the performance and prospect of the ZKD high water content quick setting material, and so on. Finally, some personally views are put forward about the roadway metal supporting, bolt supporting, new material and the stress relief under the high stress condition.
文摘In the analysis of a structure subjected to an explosion event, the determination of the blast load constitutes a crucial step. The effect of the blast load on the structure depends not only on the peak shock overpressure, but also the impulse (hence the duration). For structures with a regular geometry, the blast load may be fairly well estimated using appropriate empirical formulae; however, for more complex situations, a direct simulation using appropriate computational techniques is necessary. This paper presents a numerical simulation study on the prediction of the blast load in free air using a hydrocode, with focus on the sensitivity of the simulated blast load to the mesh grid size. The simulation results are compared with empirical predictions. It is found that the simulated blast load is sensitive to the mesh size, especially in the close-in range, and with a practically affordable mesh grid density, the blast load tends to be systematically underestimated. The study is extended to internal blast cases. An example concrete slab under internal explosion is analyzed using a coupled analysis scheme. The internal blast load from the simulation is examined and the response of the RC slab is commented.
文摘The hardening curve for sheet metal can be determined from the load-displacement curve of tensile specimen with rectangular cross-section. Therefore,uniaxial compression test on cylinder specimen made from laminated sample is put forward. Considering the influence of anisotropy on hardening properties and the stress state in popular forming process,plane strain compression test on cubic specimen made from laminated sample was advanced. Results show that the deformation range of hardening curves obtained from the presented methods is wide,which meets the need for the application in sheet metal forming processes. In view of the characteristics of methods presented in the paper and the stress strain state of various forming processes,the adaptability of the two methods presented in this paper is given.
基金Project(51805416) supported by the National Natural Science Foundation of ChinaProject(2019QNRC001) supported by the Young Elite Scientists Sponsorship Program by CAST,China+1 种基金Project(2021JJ20059) supported by the Hunan Provincial Natural Science Foundation for Excellent Young Scholars,ChinaProject(2019RS1002) supported by the Huxiang High-Level Talent Gathering Project of Hunan Province,China。
文摘As one of the advanced and efficient means of joining,the clinching process is capable of joining sheets with different materials or different sheet thicknesses.In this article,a novel modified clinching process,i.e.,the dieless clinching process,was executed to join AA6061 aluminum alloy with sheet thicknesses of 1.5,2.0,2.5 and 3.0 mm according to different sheet stack-ups.The geometrical characteristics,microhardness distribution,failure behavior,static strength,absorbed energy and instantaneous stiffness of the novel dieless joint were gotten and investigated.The results indicated that the sheet thickness ratio has a notable effect on the failure behavior and mechanical properties of the novel dieless clinched joint,and a relatively large sheet thickness ratio can improve the joint performance when joining sheets with different sheet thicknesses.
文摘The integrated structure parts are widely used in aircraft. The distortion caused by residual stresses in thick pre-stretched aluminum plates during machining integrated parts is a common and serious problem. To predict and control the machining distortion, the residual stress distribution in the thick plate must be measured firstly. The modified removal method for measuring residual stress in thick pre-stretched aluminum plates is proposed and the stress-strain relation matrix is deduced by elasticity theory. The residual stress distribution in specimen of 7050T7451 plate is measured by using the method, and measurement results are analyzed and compared with data obtained by other methods. The method is effective to measure the residual stress.
文摘This article examines the interaction of multiple cracks in an infinite plate by using a numerical method. The numerical method consists of the non-singular displacement discontinuity element presented by Crouch and Startled and the crack tip displacement discontinuity elements proposed by the author. In the numerical method implementation, the left or the right crack tip element is placed locally at the corresponding left or right crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. The numerical method is called a hybrid displacement discontinuity method. The following test examples of crack problems in an infinite plate under tension are included: “ center-inclined cracked plate”, “interaction of two collinear cracks with equal length”, “interaction of three collinear cracks with equal length”, “interaction of two parallel cracks with equal length”, and “interaction of one horizontal crack and one inclined crack”. The present numerical results show that the numerical method is simple yet very accurate for analyzing the interaction of multiple cracks in an infinite plate.
基金Supported by the Scientific Research Business of China University of Mining & Technology (Beijing) (2009QZ04) the National Natural Science Foundation of China (50974123)
文摘Taking Adaohai Coal Mine as the example, underground pressure appearance laws of fully mechanized top coal slice caving on high-dipping and thick coal seams. Through site visit, theoretical analysis and discrete element calculation, the research shows that, as the mining deepens, underground stress of lower sublevels is more obvious and higher than that of upper sublevels and is higher in the air return roadway than that in the air intake roadway in the area that is near to the top coal. Because the top coal is thick and gangue is caved above the support, underground pressure to the working face is relatively gentle. Immediate roof will mainly fall down along the floor. Main roof and the rock bed above the main roof will move to the mined out area along the fault in the early stage and then fall down with the mined out area later. In addition, roof pressure mainly periodically appears in two directions along the trend and the dip.
基金Project(50934011) supported by the National Natural Science Foundation of ChinaProject(20080430085) supported by the China Postdoctoral Science Foundation
文摘A VBHF(Variable Blank Holder Force) optimization strategy was employed to determine the optimal time-variable and spatial-variable BHF trajectories,aiming at improving the formability of automobile panels with aluminum alloy sheet.The strategy was implemented based on adaptive simulation to calculate the critical wrinkling BHF for each segmented binder of the Numisheet' 05 deck lid in a single round of simulation.The thickness comparison of the stamped part under optimal VBHF and constant BHF shows that the variance of the four sections is decreased by 70%,44%,64% and 61%,respectively,which indicates significant improvement in thickness distribution and variation control.The investigation through strain path comparison reveals the fundamental reason of formability improvement.The study proves the applicability of the new VBHF optimization strategy to complex parts with aluminum alloy sheet.
基金Projects(5130538651305385)supported by the National Natural Science Foundation of ChinaProject(E2013203093)supported by the Natural Science Foundation of Hebei Province,China
文摘Hot granule medium pressure forming (HGMF) process is a new process in which granule medium replaces the medium in existing flexible-die hot forming process, such as liquids, gases or viscous medium. Hot forming of light alloy sheet parts can be realized based on the properties of granule medium, such as withstanding high temperature and pressure, filling well, sealing and loading easily. In this work, the forming of AA7075 cylindrical parts by HGMF process is taken as an example to establish the constitutive relation and forming limit diagram (FLD) of AA7075 sheet which is related to temperature by hot uniaxial tensile test of sheet metal. Based on the assumption that granule medium is applied to extended Drucker-Prager linear material model, the finite element model of HGMF process is established and the effect of technological parameters, such as forming temperature, blank-holder gap and drawing ratio, on the sheet metal formability, is studied. The limit drawing ratio curve of AA7075 cylindrical parts at forming temperature of 175-300 ℃ is obtained by HGMF process test, and the limit drawing ratio reaches the maximum value of 1.71 at 250 ℃. The results of numerical simulation are consistent with the results of process test, and the forming force, distribution of wall thichness and form of instability are predicted correctly, which provides reference for the application of HGMF process.
基金Project(51904165)supported by the National Natural Science Foundation of ChinaProject(ZR2019QEE026)supported by the Shandong Provincial Natural Science Foundation,ChinaProject(ZR2019ZD13)supported by the Major Program of Shandong Provincial Natural Science Foundation,China。
文摘Lots of field investigations have proven that layer-crack structure usually appears during the excavation process of deep rock or coal mass.To provide experimental data for studying the formation mechanism of layer-crack structure,this study researches the influence of lateral pressure on the mechanical behavior of different rock types.Four rock types have been tested and the formation mechanism of macro-fracture surface is analyzed.Results indicate that the brittleness and burst proneness of rock or coal material are stronger than that of gypsum material due to the different mineral compositions and structures.When the lateral pressure is less than 10%uniaxial strength,the peak stress and elastic modulus increase with the increase of lateral pressure;but when the lateral pressure is larger than 10%uniaxial strength,the two parameters decrease slightly or keep steady.This is because when the lateral pressure reaches a certain value,local failure will be formed during the process of applying lateral pressure.Under the condition of low lateral pressure,the failure of the specimen is dominated by the tensile mechanism;under the condition of relatively high lateral pressure,the area of the specimen close to the free surface is tensile splitting failure,and the area far from the free surface is shear failure.
文摘To clarify and control the collapse and weighting of main roof in longwall mining is one of the important research problems in ground control. Based on the results of physical model experiment and field measurement, the behaviour of main roof above trapezoidal goaf or with fault is studied in this paper. The fracture and weighting of main roof above trapezoidal goaf are different from those above rectangular goaf. It depends on the mechanical relation between main roof blocks whether the plate blocks of main roof on both sides of fault simultaneously break and collapse.
文摘Nonlinear static analysis of piezoelectric plates has been carried out using nonlinear finite element method considering electro-mechanical coupling,The geometrical nonlinearity has been taken into account and electric potential is assumed to be quadratic across the plate thickness,The governing equations are obtained using potential energy and Hamilton's principle that includes elastic and piezoelectric effects.The finite element model is derived based on constitutive equation of piezoelectric material accounting for coupling between elasticity and electric effect using higher order plate elements,Results are presented for piezoelectric plate under different mechanical boundary conditions,Numerical results for the plate are given in dimensionless graphical forms.Effects of boundary conditions on linear and nonlinear response of the plate are also studied.The numerical results obtained by the present model are in good agreement with the available solutions reported in the literature.
文摘Roof and rib instability is an important issue in underground mining. To optimize ground support design,enhance ground stability, and reduce the possibility of roof or rib failure with minimal use of artificial ground support, it is essential to have an accurate understanding of ground conditions. This includes the location of voids, cracks, and discontinuities, as well as information about the different strata in the immediate roof. This paper briefly introduces ongoing research on void detection by using the roof bolter feed and rotation pressure. The goal of this project is to improve the sensitivity of detection programs to locate smaller joints and reduce the number of false alarms. This paper presents a brief review of the testing procedures, data analysis, logic, and algorithms used for void detection. In addition, this paper discusses the results of preliminary laboratory tests and statistical analysis of the data from these two drilling parameters used for void detection.
基金Supported by the National Natural Science Foundation of China (505740720,50874089)the National Natural Science Foundation of Shannxi Province(2006E203)
文摘The forms of roof break,roof fall,and effects of the region scope in a fully mechanizedtop-coal caving (FMTC) face of the 101 fully-mechanized top coal caving face ofthe Tingnan Coalmine were analyzed by UDEC and FLAC^(3D) software.The analysis resultconfirms the phenomenon of roof falling,roof-off-strata,roof breaking,first weighting,periodicweighting and stress concentration,redistributions of surrounding rock and so on.Itprovides the gist to analyze the law of roof movement,characteristic of confining pressure,and to determine the formative structure forms of the immediate roof and main roof duringthe caving process.These results and the underground pressure observation results are inagreement.