A design for a Li-ion battery charger IC that can operate in a constant current-constant voltage (CC- CV) charge mode is proposed. In the CC-CV charge mode,the charger IC provides a constant charging current at the ...A design for a Li-ion battery charger IC that can operate in a constant current-constant voltage (CC- CV) charge mode is proposed. In the CC-CV charge mode,the charger IC provides a constant charging current at the beginning, and then the charging current begins to decrease before the battery voltage reaches its final value. After the battery voltage reaches its final value and remains constant,the charging current is further reduced. This approach prevents charging the battery with full current near its saturated voltage,which can cause heating. The novel design of the core of the charger IC realizes the proposed CC-CV charge mode. The chip was implemented in a CSMC 0.6μm CMOS mixed signal process. The experimental results verify the realization of the proposed CC- CV charge mode. The voltage of the battery after charging is 4. 1833V.展开更多
A novel, highly linear sampling switch suitable for low-voltage operation is proposed. This switch not only eliminates the nonlinearity introduced by gate-source voltage variation, but also reduces the nonlinearity re...A novel, highly linear sampling switch suitable for low-voltage operation is proposed. This switch not only eliminates the nonlinearity introduced by gate-source voltage variation, but also reduces the nonlinearity resuiting from threshold voltage variation, which has not been accomplished in earlier low-voltage sampling switches. This is achieved by adopting a replica transistor with the same threshold voltage as the sampling transistor. The effectiveness of this technique is demonstrated by a prototype design of a sampling switch in 0. 35μm. The proposed sampling switch achieves a spurious free dynamic range of 111dB for a 0. 2MHz, 1.2Vp-p input signal, sampled at a rate of 2MS/s,about 18dB over the Bootstrapped switch. Also, the on-resistance variation is reduced by 90%. This method is especially useful for low-voltage, high resolution ADCs, which is a hot topic today.展开更多
A scheme of a frequency-hopping frequency-synthesizer applied to a Bluetooth ratio frequency (RF) front-end is presented,and design of a voltage controlled oscillator (VCO) and dual-modulus prescaler are focused o...A scheme of a frequency-hopping frequency-synthesizer applied to a Bluetooth ratio frequency (RF) front-end is presented,and design of a voltage controlled oscillator (VCO) and dual-modulus prescaler are focused on.It is fabricated in a 0.18 μm mixed-signal CMOS (complementary metal-oxide-semiconductor transistor) process.The power dissipation of VCO is low and a stable performance is gained.The measured phase noise of VCO at 2.4 GHz is less than -114.32 dBc/Hz.The structure of the DMP is optimized and a novel D-latch integrated with "OR" logic gate is used.The measured results show that the chip can work well under a 1.8 V power supply.The power dissipation of the core part in a dual modulus prescaler is only 5.76 mW.An RMS jitter of 2 ps is measured on the output signal at 118.3 MHz.It is less than 0.02% of the clock period.展开更多
Several key techniques for a PLL-type frequency synthesizer for WLAN receivers are studied. Its structure is analyzed and the main parameters are proposed. A monolithic LC-tuned voltage controlled oscillator (LCVCO)...Several key techniques for a PLL-type frequency synthesizer for WLAN receivers are studied. Its structure is analyzed and the main parameters are proposed. A monolithic LC-tuned voltage controlled oscillator (LCVCO) with low phase noise is fabricated with TSMC 0.18μm RF (radio frequency) CMOS technology. The measured phase noise is - ll7dBc/Hz at 4MHz off the center frequency of 4. 189GHz. A down-scaling circuit with low power dissipation was fabricated in a TSMC 0.18μm mixed-signal CMOS process. The measured results show that the IC can work well under a 1.8V power supply. Its total power dissipation is only 13mW.展开更多
A novel mesa ultra-thin base AlGaAs/GaAs HBT is designed and fabricated with wet chemical selective etch technique and monitor electrode technique. It has a particular and obvious voltage-controlled NDR whose PVCR is ...A novel mesa ultra-thin base AlGaAs/GaAs HBT is designed and fabricated with wet chemical selective etch technique and monitor electrode technique. It has a particular and obvious voltage-controlled NDR whose PVCR is larger than 120. By use of device simulation,the cause of NDR is that increasing collector voltage makes the ultrathin base reach through and the device transforms from a bipolar state to a bulk barrier state. In addition, the simulated cutoff frequency is about 60-80GHz.展开更多
High-voltage nMOS devices are fabricated successfully and the key technology parameters of the process are optimized by TCAD software. Experiment results show that the device's breakdown voltage is 114V, the threshol...High-voltage nMOS devices are fabricated successfully and the key technology parameters of the process are optimized by TCAD software. Experiment results show that the device's breakdown voltage is 114V, the threshold voltage and maximum driven ability are 1.02V and 7.5mA(W/L = 50), respectively. Experimental results and simulation ones are compared carefully and a way to improve the breakdown performance is proposed.展开更多
A new approach for the design and implementation of a programmable voltage reference based on an improved current mode bandgap voltage reference is presented. The circuit is simulated and fabricated with Chartered 0....A new approach for the design and implementation of a programmable voltage reference based on an improved current mode bandgap voltage reference is presented. The circuit is simulated and fabricated with Chartered 0. 35μm mixed-signal technology. Measurements demonstrate that the temperature coefficient is ± 36. 3ppm/℃ from 0 to 100℃ when the VID inputs are 11110.As the supply voltage is varied from 2.7 to 5V, the voltage reference varies by about 5mV. The maximum glitch of the transient response is about 20mV at 125kHz. Depending on the state of the five VID inputs,an output voltage between 1.1 and 1.85V is programmed in increments of 25mV.展开更多
A mathematical model was developed combining the dynamics of an Euler-Bernoulli beam, described by the assumed-mode method and hydraulic circuit dynamics. Only one matrix, termed drive Jacobian, was needed in the mode...A mathematical model was developed combining the dynamics of an Euler-Bernoulli beam, described by the assumed-mode method and hydraulic circuit dynamics. Only one matrix, termed drive Jacobian, was needed in the modeling of interaction between hydraulic circuit and flexible manipulator mechanism. Furthermore, a new robust controller based on mentioned above dynamic model was also considered to regulate both flexural vibrations and rigid body motion. The proposed controller combined sliding mode and backstepping techniques to deal with the nonlinear system with uncertainties. The sliding mode control was used to achieve an asymptotic joint angle and vibration regulation by providing a virtual force while the backstepping technique was used to regulate the spool position of a hydraulic valve to provide the required control force. Simulation results are presented to show the stabilizing effect and robustness of this control strategy.展开更多
Operational reliability evaluation theory reflects real-time reliability level of power system. The component failure rate varies with operating conditions. The impact of real-time operating conditions such as ambient...Operational reliability evaluation theory reflects real-time reliability level of power system. The component failure rate varies with operating conditions. The impact of real-time operating conditions such as ambient temperature and transformer MVA (megavolt-ampere) loading on transformer insulation life is studied in this paper. The formula of transformer failure rate based on the winding hottest-spot temperature (HST) is given. Thus the real-time reliability model of transformer based on oper- ating conditions is presented. The work is illustrated using the 1979 IEEE Reliability Test System. The changes of operating conditions are simulated by using hourly load curve and temperature curve, so the curves of real-time reliability indices are ob- tained by using operational reliability evaluation.展开更多
To simulate the process of electrode operation, a dynamic model describing the electrode system of three-phase electric arc furnace was developed. This new model can be divided into three submodels in terms of the pra...To simulate the process of electrode operation, a dynamic model describing the electrode system of three-phase electric arc furnace was developed. This new model can be divided into three submodels in terms of the practical situation. They are the power supply system model the electric arc model and the hydraulic actuator system model. According to the basic circuit theory, the power supply system model where the high voltage transmission circuit and mutual inductances were considered, was set up. The electric arc model, which was novel for the electrode control, served as the electrical load and was connected to the power supply system model. The hydraulic actuator system model consists of the proportional valve part that is modeled to capture the dead-zone nonlinear characteristics and the hydraulic cylinder part where the impact of the load force is taken into account. By comparing simulation data and actual data, the results show that the electrode system model is proved to be accurate.展开更多
This paper presents a method of forecasting stable operation of gas compressor unit (GCU) centrifugal supercharger (CFS) installed on a piping of compressor shops servicing gas pipelines. The stability of supercharger...This paper presents a method of forecasting stable operation of gas compressor unit (GCU) centrifugal supercharger (CFS) installed on a piping of compressor shops servicing gas pipelines. The stability of superchargers operation is assessed in relation to the phenomenon of surge. Solution of this problem amounts to the development and numerical analysis of a set of ordinary differential equations. The set describes transmission of gas through a compressor shop as a fluid dynamics model with lumped parameters. The proposed method is oriented to wide application by specialists working in the gas industry. The practical application of this method can use all-purpose programming and mathematical software available to specialists of gas companies.展开更多
The non-linear finite element software ABAQUS was used to simulate the dynamic response of a marine supercharged boiler when subjected to impact loading. Shock resistance was analyzed by the time-domain simulation met...The non-linear finite element software ABAQUS was used to simulate the dynamic response of a marine supercharged boiler when subjected to impact loading. Shock resistance was analyzed by the time-domain simulation method. After exhaustive simulations,the effect of air pressure induced by different working conditions on the shock response of a supercharged boiler was reviewed,leading to conclusions about the variability of structural response with different loading parameters. In order to simulate the real impulsive environments of supercharged boilers,the integration of equipment and ship structure was then primarily used to analyze shock response. These distinctly different equipment shock test methods,run under equivalent work conditions,were compared and the causes of discrepancy were analyzed. The main purpose of this paper is to present references for the anti-shock design of marine supercharged boilers.展开更多
A pressurizer is one of important equipment in a pressurized water reactor plant. It is used to maintain the pressure of primary coolant within allowed range because the sharp change of coolant pressure affects the se...A pressurizer is one of important equipment in a pressurized water reactor plant. It is used to maintain the pressure of primary coolant within allowed range because the sharp change of coolant pressure affects the security of reactor, therefor, the study of pressurizer’s pressure control methods is very important. In this paper, an adaptive fuzzy controller is presented for pressure control of a presurizer in a nuclear power plant. The controller can on-line tune fuzzy control rules and parameters by self-learning in the actual control process, which possesses the way of thinking like human to make a decision. The simulation results for a pressurized water reactor plant show that the adaptive fuzzy controller has optimum and intelligent characteristics, which prove the controller is effective.展开更多
As a transport means of oil and gas the submarine pipeline has many merits, such as continuous delivery, large conveying capacity, convenient management, etc. A tube was chosen in our study to simulate the submarine p...As a transport means of oil and gas the submarine pipeline has many merits, such as continuous delivery, large conveying capacity, convenient management, etc. A tube was chosen in our study to simulate the submarine pipeline in the experiments. A high accuracy instrument ADV and high precision point-type pressure sensors were used to measure the parameters of the flow field, including the pressure distribution, velocities at seven cross sections near the submarine pipeline with five different clearance ratios, and twelve dynamic pressure values around the pipeline. The pressure distributions and velocity changes around the pipe under dif- ferent flow velocities and clearance ratios were analyzed. These results might be useful for further study of submarine pipeline ero- sion and protection.展开更多
Basically on the multi-body system dynamics,the virtual prototype of the hydraulic shock absorber for the bench test is developed in the ADAMS environment.Dynamic behaviors of the absorber are studied by both computer...Basically on the multi-body system dynamics,the virtual prototype of the hydraulic shock absorber for the bench test is developed in the ADAMS environment.Dynamic behaviors of the absorber are studied by both computer simulation and real test.Numerical predictions of dynamic responses are produced by the established virtual prototype of the absorber and compared with experimental results.It has been shown from the comparison that the vibration behaviors of the prototype with hysteretic damping characteristics are considered to be more identical with the bench test results than those of the same prototype with piecewise linear damping properties are.The current virtual prototype of the shock absorber is correct and can be a developing terrace for the optimizing design of the absorber and matching capability of the whole car.展开更多
A nonlinear pressure controller was presented to track desired feeding pressure for the cutter feeding system(CFS) of trench cutter(TC) in the presence of unknown external disturbances.The feeding pressure control of ...A nonlinear pressure controller was presented to track desired feeding pressure for the cutter feeding system(CFS) of trench cutter(TC) in the presence of unknown external disturbances.The feeding pressure control of CFS is subjected to unknown load characteristics of rock or soil; in addition,the geological condition is time-varying.Due to the complex load characteristics of rock or soil,the feeding velocity of TC is related to geological conditions.What is worse,its dynamic model is subjected to uncertainties and its function is unknown.To deal with the particular characteristics of CFS,a novel adaptive fuzzy integral sliding mode control(AFISMC) was designed for feeding pressure control of CFS,which combines the robust characteristics of an integral sliding mode controller and the adaptive adjusting characteristics of an adaptive fuzzy controller.The AFISMC feeding pressure controller is synthesized using the backstepping technique.The stability of the overall closed-loop system consisting of the adaptive fuzzy inference system,integral sliding mode controller and the cutter feeding system is proved using Lyapunov theory.Experiments are conducted on a TC test bench with the AFISMC under different operating conditions.The experimental results demonstrate that the proposed AFISMC feeding pressure controller for CFS gives a superior and robust pressure tracking performance with maximum pressure tracking error within ?0.3 MPa.展开更多
Updating parameters according to the driving rate of input, the rate-dependent Prandtl-Ishlinskii (PI) model is widely used in hysteresis modeling and compensation. In order to improve the modeling accuracy, two PI ...Updating parameters according to the driving rate of input, the rate-dependent Prandtl-Ishlinskii (PI) model is widely used in hysteresis modeling and compensation. In order to improve the modeling accuracy, two PI models identified at low and high driving rates separately are incorporated through a combination law. For the piezo- driven flexure-based mechanism, the very low damping ratio makes it easy to excite the structural vibration. As a re- suit, the measured hysteresis loop is greatly distorted and the modeling accuracy of the identified P1 model is signifi- cantly affected. In this paper, a novel time-efficient parameter identification method which utilizes the superimposed sinusoidal signals as the control input is proposed. This method effectively avoids the excitation of the structural vibra- tion. In addition, as the driving rate of the superimposed sinusoidal signals covers a wide range, all the coefficients required for modeling the rate-dependence can be identified through only one set of experimental data. Hysteresis modeling and trajectory tracking experiments were performed on a 2-DOF piezo-driven flexure-based mechanism. The experimental results show that the combined hysteresis model maintains the modeling accuracy over the entire work- ing range of the flexure-based mechanism. The mechanism's hysteresis is significantly suppressed by the use of the inverse PI model as the feedforward controller; and better result is achieved when a feedback loop is also incorporated. The tracking performance of the flexure-based mechanism is greatly improved.展开更多
The piezoelectric actuator has been widely used in precision instruments and precision control. However, hysteresis, nonlinearity and creep exist in the actuator, which limit actuator applications and affect accuracy....The piezoelectric actuator has been widely used in precision instruments and precision control. However, hysteresis, nonlinearity and creep exist in the actuator, which limit actuator applications and affect accuracy. This thesis introduces fuzzy control as the algorithm of a closed-loop control system to control the piezoelectric actuator. Fuzzy control can make this closed-looped system not only have high linearity, repeatability, accuracy and few overshoot, but isalso easily used.展开更多
An improved encapsulation method of a sensing element for a cement-based piezoelectric sensor used in civil engineering structure was developed and some tests were carried out for validating this method. The cement-ba...An improved encapsulation method of a sensing element for a cement-based piezoelectric sensor used in civil engineering structure was developed and some tests were carried out for validating this method. The cement-based piezoelectric sensor of this kind is mainly used in concrete structure due to its compatibility with concrete, and the encapsulation method of its sensing element is important to the effectiveness and accuracy of the transfer of the stress from concrete to the sensing element. The sensor′s measurement error of the previous encapsulation method, which was induced by the area of the encapsulation material and the inherent difference of Young′s modulus between cement and encapsulation material, was analyzed theoretically using parallel model. In the improved method, the error is minimized by decreasing the area of the encapsulation material and changing the configuration of the cement and piezoelectric material in the sensor. Two sensors made by the previous and improved methods were embedded in two prisms respectively and the prisms were compressed on Material Test System. Through the comparison of the measurement errors of the two sensors, the improved method was evaluated. The test results show that the improved encapsulation method is effective and feasible.展开更多
文摘A design for a Li-ion battery charger IC that can operate in a constant current-constant voltage (CC- CV) charge mode is proposed. In the CC-CV charge mode,the charger IC provides a constant charging current at the beginning, and then the charging current begins to decrease before the battery voltage reaches its final value. After the battery voltage reaches its final value and remains constant,the charging current is further reduced. This approach prevents charging the battery with full current near its saturated voltage,which can cause heating. The novel design of the core of the charger IC realizes the proposed CC-CV charge mode. The chip was implemented in a CSMC 0.6μm CMOS mixed signal process. The experimental results verify the realization of the proposed CC- CV charge mode. The voltage of the battery after charging is 4. 1833V.
文摘A novel, highly linear sampling switch suitable for low-voltage operation is proposed. This switch not only eliminates the nonlinearity introduced by gate-source voltage variation, but also reduces the nonlinearity resuiting from threshold voltage variation, which has not been accomplished in earlier low-voltage sampling switches. This is achieved by adopting a replica transistor with the same threshold voltage as the sampling transistor. The effectiveness of this technique is demonstrated by a prototype design of a sampling switch in 0. 35μm. The proposed sampling switch achieves a spurious free dynamic range of 111dB for a 0. 2MHz, 1.2Vp-p input signal, sampled at a rate of 2MS/s,about 18dB over the Bootstrapped switch. Also, the on-resistance variation is reduced by 90%. This method is especially useful for low-voltage, high resolution ADCs, which is a hot topic today.
文摘A scheme of a frequency-hopping frequency-synthesizer applied to a Bluetooth ratio frequency (RF) front-end is presented,and design of a voltage controlled oscillator (VCO) and dual-modulus prescaler are focused on.It is fabricated in a 0.18 μm mixed-signal CMOS (complementary metal-oxide-semiconductor transistor) process.The power dissipation of VCO is low and a stable performance is gained.The measured phase noise of VCO at 2.4 GHz is less than -114.32 dBc/Hz.The structure of the DMP is optimized and a novel D-latch integrated with "OR" logic gate is used.The measured results show that the chip can work well under a 1.8 V power supply.The power dissipation of the core part in a dual modulus prescaler is only 5.76 mW.An RMS jitter of 2 ps is measured on the output signal at 118.3 MHz.It is less than 0.02% of the clock period.
文摘Several key techniques for a PLL-type frequency synthesizer for WLAN receivers are studied. Its structure is analyzed and the main parameters are proposed. A monolithic LC-tuned voltage controlled oscillator (LCVCO) with low phase noise is fabricated with TSMC 0.18μm RF (radio frequency) CMOS technology. The measured phase noise is - ll7dBc/Hz at 4MHz off the center frequency of 4. 189GHz. A down-scaling circuit with low power dissipation was fabricated in a TSMC 0.18μm mixed-signal CMOS process. The measured results show that the IC can work well under a 1.8V power supply. Its total power dissipation is only 13mW.
文摘A novel mesa ultra-thin base AlGaAs/GaAs HBT is designed and fabricated with wet chemical selective etch technique and monitor electrode technique. It has a particular and obvious voltage-controlled NDR whose PVCR is larger than 120. By use of device simulation,the cause of NDR is that increasing collector voltage makes the ultrathin base reach through and the device transforms from a bipolar state to a bulk barrier state. In addition, the simulated cutoff frequency is about 60-80GHz.
文摘High-voltage nMOS devices are fabricated successfully and the key technology parameters of the process are optimized by TCAD software. Experiment results show that the device's breakdown voltage is 114V, the threshold voltage and maximum driven ability are 1.02V and 7.5mA(W/L = 50), respectively. Experimental results and simulation ones are compared carefully and a way to improve the breakdown performance is proposed.
文摘A new approach for the design and implementation of a programmable voltage reference based on an improved current mode bandgap voltage reference is presented. The circuit is simulated and fabricated with Chartered 0. 35μm mixed-signal technology. Measurements demonstrate that the temperature coefficient is ± 36. 3ppm/℃ from 0 to 100℃ when the VID inputs are 11110.As the supply voltage is varied from 2.7 to 5V, the voltage reference varies by about 5mV. The maximum glitch of the transient response is about 20mV at 125kHz. Depending on the state of the five VID inputs,an output voltage between 1.1 and 1.85V is programmed in increments of 25mV.
文摘A mathematical model was developed combining the dynamics of an Euler-Bernoulli beam, described by the assumed-mode method and hydraulic circuit dynamics. Only one matrix, termed drive Jacobian, was needed in the modeling of interaction between hydraulic circuit and flexible manipulator mechanism. Furthermore, a new robust controller based on mentioned above dynamic model was also considered to regulate both flexural vibrations and rigid body motion. The proposed controller combined sliding mode and backstepping techniques to deal with the nonlinear system with uncertainties. The sliding mode control was used to achieve an asymptotic joint angle and vibration regulation by providing a virtual force while the backstepping technique was used to regulate the spool position of a hydraulic valve to provide the required control force. Simulation results are presented to show the stabilizing effect and robustness of this control strategy.
基金Project (No. 2004CB217901) supported by the National Basic Re-search Program (973) of China
文摘Operational reliability evaluation theory reflects real-time reliability level of power system. The component failure rate varies with operating conditions. The impact of real-time operating conditions such as ambient temperature and transformer MVA (megavolt-ampere) loading on transformer insulation life is studied in this paper. The formula of transformer failure rate based on the winding hottest-spot temperature (HST) is given. Thus the real-time reliability model of transformer based on oper- ating conditions is presented. The work is illustrated using the 1979 IEEE Reliability Test System. The changes of operating conditions are simulated by using hourly load curve and temperature curve, so the curves of real-time reliability indices are ob- tained by using operational reliability evaluation.
基金Projects(2007AA04Z194, 2007AA041401) supported by the National High-Tech Research and Development Program of China
文摘To simulate the process of electrode operation, a dynamic model describing the electrode system of three-phase electric arc furnace was developed. This new model can be divided into three submodels in terms of the practical situation. They are the power supply system model the electric arc model and the hydraulic actuator system model. According to the basic circuit theory, the power supply system model where the high voltage transmission circuit and mutual inductances were considered, was set up. The electric arc model, which was novel for the electrode control, served as the electrical load and was connected to the power supply system model. The hydraulic actuator system model consists of the proportional valve part that is modeled to capture the dead-zone nonlinear characteristics and the hydraulic cylinder part where the impact of the load force is taken into account. By comparing simulation data and actual data, the results show that the electrode system model is proved to be accurate.
文摘This paper presents a method of forecasting stable operation of gas compressor unit (GCU) centrifugal supercharger (CFS) installed on a piping of compressor shops servicing gas pipelines. The stability of superchargers operation is assessed in relation to the phenomenon of surge. Solution of this problem amounts to the development and numerical analysis of a set of ordinary differential equations. The set describes transmission of gas through a compressor shop as a fluid dynamics model with lumped parameters. The proposed method is oriented to wide application by specialists working in the gas industry. The practical application of this method can use all-purpose programming and mathematical software available to specialists of gas companies.
文摘The non-linear finite element software ABAQUS was used to simulate the dynamic response of a marine supercharged boiler when subjected to impact loading. Shock resistance was analyzed by the time-domain simulation method. After exhaustive simulations,the effect of air pressure induced by different working conditions on the shock response of a supercharged boiler was reviewed,leading to conclusions about the variability of structural response with different loading parameters. In order to simulate the real impulsive environments of supercharged boilers,the integration of equipment and ship structure was then primarily used to analyze shock response. These distinctly different equipment shock test methods,run under equivalent work conditions,were compared and the causes of discrepancy were analyzed. The main purpose of this paper is to present references for the anti-shock design of marine supercharged boilers.
文摘A pressurizer is one of important equipment in a pressurized water reactor plant. It is used to maintain the pressure of primary coolant within allowed range because the sharp change of coolant pressure affects the security of reactor, therefor, the study of pressurizer’s pressure control methods is very important. In this paper, an adaptive fuzzy controller is presented for pressure control of a presurizer in a nuclear power plant. The controller can on-line tune fuzzy control rules and parameters by self-learning in the actual control process, which possesses the way of thinking like human to make a decision. The simulation results for a pressurized water reactor plant show that the adaptive fuzzy controller has optimum and intelligent characteristics, which prove the controller is effective.
文摘As a transport means of oil and gas the submarine pipeline has many merits, such as continuous delivery, large conveying capacity, convenient management, etc. A tube was chosen in our study to simulate the submarine pipeline in the experiments. A high accuracy instrument ADV and high precision point-type pressure sensors were used to measure the parameters of the flow field, including the pressure distribution, velocities at seven cross sections near the submarine pipeline with five different clearance ratios, and twelve dynamic pressure values around the pipeline. The pressure distributions and velocity changes around the pipe under dif- ferent flow velocities and clearance ratios were analyzed. These results might be useful for further study of submarine pipeline ero- sion and protection.
基金the Shanghai Administration of Education under Shanghai Key Disciplines Development Fund ProjectShanghai Automotive Technology Development Foundation under Contract NO.1 325 A
文摘Basically on the multi-body system dynamics,the virtual prototype of the hydraulic shock absorber for the bench test is developed in the ADAMS environment.Dynamic behaviors of the absorber are studied by both computer simulation and real test.Numerical predictions of dynamic responses are produced by the established virtual prototype of the absorber and compared with experimental results.It has been shown from the comparison that the vibration behaviors of the prototype with hysteretic damping characteristics are considered to be more identical with the bench test results than those of the same prototype with piecewise linear damping properties are.The current virtual prototype of the shock absorber is correct and can be a developing terrace for the optimizing design of the absorber and matching capability of the whole car.
基金Project(2012AA041801)supported by the High-tech Research and Development Program of China
文摘A nonlinear pressure controller was presented to track desired feeding pressure for the cutter feeding system(CFS) of trench cutter(TC) in the presence of unknown external disturbances.The feeding pressure control of CFS is subjected to unknown load characteristics of rock or soil; in addition,the geological condition is time-varying.Due to the complex load characteristics of rock or soil,the feeding velocity of TC is related to geological conditions.What is worse,its dynamic model is subjected to uncertainties and its function is unknown.To deal with the particular characteristics of CFS,a novel adaptive fuzzy integral sliding mode control(AFISMC) was designed for feeding pressure control of CFS,which combines the robust characteristics of an integral sliding mode controller and the adaptive adjusting characteristics of an adaptive fuzzy controller.The AFISMC feeding pressure controller is synthesized using the backstepping technique.The stability of the overall closed-loop system consisting of the adaptive fuzzy inference system,integral sliding mode controller and the cutter feeding system is proved using Lyapunov theory.Experiments are conducted on a TC test bench with the AFISMC under different operating conditions.The experimental results demonstrate that the proposed AFISMC feeding pressure controller for CFS gives a superior and robust pressure tracking performance with maximum pressure tracking error within ?0.3 MPa.
基金Supported by National Natural Science Foundation of China (No. 51175372)National Key Special Project of Science and Technology of China (No. 2011ZX04016-011)
文摘Updating parameters according to the driving rate of input, the rate-dependent Prandtl-Ishlinskii (PI) model is widely used in hysteresis modeling and compensation. In order to improve the modeling accuracy, two PI models identified at low and high driving rates separately are incorporated through a combination law. For the piezo- driven flexure-based mechanism, the very low damping ratio makes it easy to excite the structural vibration. As a re- suit, the measured hysteresis loop is greatly distorted and the modeling accuracy of the identified P1 model is signifi- cantly affected. In this paper, a novel time-efficient parameter identification method which utilizes the superimposed sinusoidal signals as the control input is proposed. This method effectively avoids the excitation of the structural vibra- tion. In addition, as the driving rate of the superimposed sinusoidal signals covers a wide range, all the coefficients required for modeling the rate-dependence can be identified through only one set of experimental data. Hysteresis modeling and trajectory tracking experiments were performed on a 2-DOF piezo-driven flexure-based mechanism. The experimental results show that the combined hysteresis model maintains the modeling accuracy over the entire work- ing range of the flexure-based mechanism. The mechanism's hysteresis is significantly suppressed by the use of the inverse PI model as the feedforward controller; and better result is achieved when a feedback loop is also incorporated. The tracking performance of the flexure-based mechanism is greatly improved.
文摘The piezoelectric actuator has been widely used in precision instruments and precision control. However, hysteresis, nonlinearity and creep exist in the actuator, which limit actuator applications and affect accuracy. This thesis introduces fuzzy control as the algorithm of a closed-loop control system to control the piezoelectric actuator. Fuzzy control can make this closed-looped system not only have high linearity, repeatability, accuracy and few overshoot, but isalso easily used.
基金Supported by Hong Kong Research Grant Council to HKUSTunder grant HKUST6212/O2ENational Science Fund forDistinguished Young Scholars of China(No.50425824).
文摘An improved encapsulation method of a sensing element for a cement-based piezoelectric sensor used in civil engineering structure was developed and some tests were carried out for validating this method. The cement-based piezoelectric sensor of this kind is mainly used in concrete structure due to its compatibility with concrete, and the encapsulation method of its sensing element is important to the effectiveness and accuracy of the transfer of the stress from concrete to the sensing element. The sensor′s measurement error of the previous encapsulation method, which was induced by the area of the encapsulation material and the inherent difference of Young′s modulus between cement and encapsulation material, was analyzed theoretically using parallel model. In the improved method, the error is minimized by decreasing the area of the encapsulation material and changing the configuration of the cement and piezoelectric material in the sensor. Two sensors made by the previous and improved methods were embedded in two prisms respectively and the prisms were compressed on Material Test System. Through the comparison of the measurement errors of the two sensors, the improved method was evaluated. The test results show that the improved encapsulation method is effective and feasible.