The governing equations are derived by circumferentially averaging the three-dimensional (3D) Navier-Stokes equations, which are solved using a time marching finite volume approach. Both Euler throughflow model and ...The governing equations are derived by circumferentially averaging the three-dimensional (3D) Navier-Stokes equations, which are solved using a time marching finite volume approach. Both Euler throughflow model and Navier-Stokes (N-S) throughflow model are employed to investigate the performance and flow fields of a highly loaded transonic single-stage fan ATS-2 and a four-stage fan. The results are compared with the experimental and three-dimensional computational results. It shows that the throughflow models can provide reasonable perform- ance characteristics and N-S throughflow model gives better predictions in endwall regions. A throughflow com- putation in which all the non-axisymmetric terms are included has been performed at off-design condition and the radial distributions of the flow field can be well described.展开更多
基金supported by National Natural Science Foundation of China (50736007, 51006005)
文摘The governing equations are derived by circumferentially averaging the three-dimensional (3D) Navier-Stokes equations, which are solved using a time marching finite volume approach. Both Euler throughflow model and Navier-Stokes (N-S) throughflow model are employed to investigate the performance and flow fields of a highly loaded transonic single-stage fan ATS-2 and a four-stage fan. The results are compared with the experimental and three-dimensional computational results. It shows that the throughflow models can provide reasonable perform- ance characteristics and N-S throughflow model gives better predictions in endwall regions. A throughflow com- putation in which all the non-axisymmetric terms are included has been performed at off-design condition and the radial distributions of the flow field can be well described.