A fast explicit finite difference method (FEFDM),derived from the differential equations of one-dimensional steady pipe flow,was presented for calculation of wellhead injection pressure.Recalculation with a traditiona...A fast explicit finite difference method (FEFDM),derived from the differential equations of one-dimensional steady pipe flow,was presented for calculation of wellhead injection pressure.Recalculation with a traditional numerical method of the same equations corroborates well the reliability and rate of FEFDM.Moreover,a flow rate estimate method was developed for the project whose injection rate has not been clearly determined.A wellhead pressure regime determined by this method was successfully applied to the trial injection operations in Shihezi formation of Shenhua CCS Project,which is a good practice verification of FEFDM.At last,this method was used to evaluate the effect of friction and acceleration terms on the flow equation on the wellhead pressure.The result shows that for deep wellbore,the friction term can be omitted when flow rate is low and in a wide range of velocity the acceleration term can always be deleted.It is also shown that with flow rate increasing,the friction term can no longer be neglected.展开更多
This paper discusses the technique of casting concrete ofmicropiles with pressures and the consequence of comparisons with normal way of casting concrete (casting with gravity). Preliminary geotechnical studies have...This paper discusses the technique of casting concrete ofmicropiles with pressures and the consequence of comparisons with normal way of casting concrete (casting with gravity). Preliminary geotechnical studies have been made in specific area in Sudan to predict the soil parameters and then an experimental work has been done for an estimated number ofmicropiles with different diameters and different techniques of placing concrete with various amount of pressure. This study was carried out to learn the usefulness of this technique in the field of structural foundations in Sudan. Capacities of micropiles were compared in cases of non-pressure casting (normal way of casting concrete) and pressure casting. Through the results, it was found that the entry of pressure factor in the operation of casting concrete increases the capacities of micropiles. The increased value of ultimate load depends on the amount of pressure applied.展开更多
基金Project(Z110803)supported by the State Key Laboratory of Geomechanics and Geotechnical Engineering,ChinaProject(2008AA062303)supported by the National High Technology Research and Development Program of China
文摘A fast explicit finite difference method (FEFDM),derived from the differential equations of one-dimensional steady pipe flow,was presented for calculation of wellhead injection pressure.Recalculation with a traditional numerical method of the same equations corroborates well the reliability and rate of FEFDM.Moreover,a flow rate estimate method was developed for the project whose injection rate has not been clearly determined.A wellhead pressure regime determined by this method was successfully applied to the trial injection operations in Shihezi formation of Shenhua CCS Project,which is a good practice verification of FEFDM.At last,this method was used to evaluate the effect of friction and acceleration terms on the flow equation on the wellhead pressure.The result shows that for deep wellbore,the friction term can be omitted when flow rate is low and in a wide range of velocity the acceleration term can always be deleted.It is also shown that with flow rate increasing,the friction term can no longer be neglected.
文摘This paper discusses the technique of casting concrete ofmicropiles with pressures and the consequence of comparisons with normal way of casting concrete (casting with gravity). Preliminary geotechnical studies have been made in specific area in Sudan to predict the soil parameters and then an experimental work has been done for an estimated number ofmicropiles with different diameters and different techniques of placing concrete with various amount of pressure. This study was carried out to learn the usefulness of this technique in the field of structural foundations in Sudan. Capacities of micropiles were compared in cases of non-pressure casting (normal way of casting concrete) and pressure casting. Through the results, it was found that the entry of pressure factor in the operation of casting concrete increases the capacities of micropiles. The increased value of ultimate load depends on the amount of pressure applied.