A pressure relief gas extraction technical model of a typical mining area is proposed based on coal and gas simultaneous extraction theory. Flac3 Dwas employed to model vertical stress and displacement contour plot ch...A pressure relief gas extraction technical model of a typical mining area is proposed based on coal and gas simultaneous extraction theory. Flac3 Dwas employed to model vertical stress and displacement contour plot characteristics of non-outburst coal seam(No. 4) on top of outburst coal seam(No. 2) along strike and incline directions. Field investigations were also conducted to verify the scientific nature of the simulation. The results demonstrate that gas pressure in No. 2 coal seam dropped to approximately 0.55 MPa in the pressure relief multi-coal seam. The highest expansion rate of the coal mine reached up to 2.58%.The pressure-relief angle was 76° along the incline direction and 60° along the strike direction. As the expansion rate and pressure-relief angle increased and the gas pressure decreased, a large amount of gas flowed into the gob of No. 4 from No. 2 coal seam and was later discharged through specific gas pipes,which eliminated No. 2 outburst risks. This study resulted in positive outcomes in that gas extraction time was reduced by 13.5 days, due to pressure relief, and drilling work load was reduced by 0.1161 m/t coal. This method ensures that gas is discharged from the outburst coal seam quickly and safely,demonstrating that the proposed technical model of pressure-relief gas extraction is effective in a multi-coal seam region.展开更多
The front abutment pressure of a fully-mechanized workface of 11061 soft coal isolated island of Liangbei Coal Mine was measured and studied using a self-developed mining-induced stress monitoring system associated wi...The front abutment pressure of a fully-mechanized workface of 11061 soft coal isolated island of Liangbei Coal Mine was measured and studied using a self-developed mining-induced stress monitoring system associated with electromagnetic radiation technology, and the effects of abutment pressure distribution on strata behavior we discussed. The results indicate that the miningdnduced influencing distance advanced at the fully-mechanized working face of soft coal isolated island is larger than that at the gen- eral working face at the isolated island, besides the fracture zone in front of working face was widened to some extent, and the influencing range caused by relaxations on both roadways became bigger with the advancing working face. Moreover, it can be indicated that mining has significant effect on strata behav- ior of fully-mechanized working face of soft coal isolated island, which is mostly distributed in the area of stress concentration. The research results have an important reference value for revealing the distribution pattern of the front abutment pressure of a fully-mechanized working face of soft coal isolated island, and controlling the coal-rock dynamic disaster occurrence under similar mining conditions.展开更多
In multiple seams mining, the seam with relatively low gas content (protective seam) is often extracted prior to mining its overlying and/or underlying seams of high gas content and low permeability to minimize the ...In multiple seams mining, the seam with relatively low gas content (protective seam) is often extracted prior to mining its overlying and/or underlying seams of high gas content and low permeability to minimize the risk of high gas emission and outbursts of coal and gas. A key to success with this mining sequence is to gain a detailed understanding of the movement and fracture evolution of the overlying and underlying strata after the protective seam in extracted. In Zhuji mine, the No. 11-2 seam is extracted as a protective seam with the pillarless mining method by retaining goal-side roadways prior to its overlying No. 13-1 seam. An investigation has been undertaken in the panel 1111 (1) of Zhuji mine to physically simulate the movement and fracture evolution of the overlying strata alter the No. 1 I-2 seam is extracted. In the physical simulation, the displacement, strain, and deformation and failure process of the model for simulation were acquired with various means such as grating displacement meter, strain gauges, and digital photography. The simulation result shows that: (1) Initial caving interval of the immediate roof was 21.6 m, the first weighting interval was 23.5-37.3 m with the average interval of 33.5 m, and the periodic weighting interval of the main roof was in a range of 8.2-20.55 m and averaged at 15.2 m. (2) The maximum height of the caving zone after the extraction of No. 11-2 seam was 8.0 m, which was 4 times of the seam mining height and the internal strata of the caving zone collapsed irregularly. The mining-induced fractures developed 8-30 m above the mined No. 11-2 seam, which was 7.525 times of the seam mining height, the fracture zone was about 65° upward from the seam open-off cut toward the goaf, the height of longitudinal joint growth was 4-20 times of the mining seam height, and the height of lateral joint growth was 20-25 times of the mining seam height. (3) The "arch-in-arch" mechanical structure of the internal goaf was bounded by an expansion angle of broken strata in the lateral direction of the retained goaf-side roadway. The spatial and temporal evolution regularities of over- burden's displacement field and stress field, dynamic development process and distribution of fracture field were analyzed. Based on the simulation results, it is recommended that several goaf drainage methods, i.e. gas drainage with buried pipes in goaf, surface goaf gas drainage, and cross-measure boreholes, should be implemented to ensure the safe mining of the panel 1111 (1).展开更多
t Research and development of safe and effective control technology of hard roof is an inevitable trend at present. Directional hydraulic fracturing technology is expected to become a safe and effective way to control...t Research and development of safe and effective control technology of hard roof is an inevitable trend at present. Directional hydraulic fracturing technology is expected to become a safe and effective way to control and manage hard roof. In order to make hard roof fracture in a directional way, a hydraulic fracture field test has been conducted in the third panel district of Tashan Coal Mine in Datong. First, two hydraulic fracturing drilling holes and four observing drilling holes were arranged in the roof, followed by a wedge-shaped ring slot in each hydraulic fracturing drilling hole. The hydraulic fracturing holes were then sealed and, hydraulic fracturing was conducted. The results show that the hard roof is fractured directionally by the hydraulic fracturing function of the two fracturing drilling holes; the sudden drop, or the overall downward trend of hydraulic pressure from hydraulic monitoring is the proof that the rock in the hard roof has been fractured. The required hydraulic pressure to fracture the hard roof in Tashan coal mine, consisting of carboniferous sandstone layer, is 50.09 MPa, and the fracturing radius of a single drilling hole is not less than 10.5 m. The wedge-shaped ring slot made in the bottom of the hydraulic fracturing drilling hole plays a guiding role for crack propagation. After the hydraulic fracturing drill hole is cracked, the propagation of the resulting hydraulic crack, affected mainly by the regional stress field, will turn to other directions.展开更多
When gob-side entry retaining is implemented in deep coal seams threatened by rockburst, the cementbased supporting body beside roadway will bear greater roof pressure and strong impact load. Then the supporting body ...When gob-side entry retaining is implemented in deep coal seams threatened by rockburst, the cementbased supporting body beside roadway will bear greater roof pressure and strong impact load. Then the supporting body may easily deform and fail because of its low strength in the early stage. This paper established the roadside support mechanical model of gob-side entry retaining. Based on this model,we proposed and used the soft–strong supporting body as roadside support in the gob-side entry retaining. In the early stage of roof movement, the soft–strong supporting body has a better compressibility, which can not only relieve roof pressure and strong impact load, but also reduce the supporting resistance and prevent the supporting body from being crushed. In the later stage, with the increase of the strength of the supporting body, it can better support the overlying roof. The numerical simulation results and industrial test show that the soft–strong supporting body as roadside support can be better applied into the gob-side entry retaining in deep coal seams threatened by rockburst.展开更多
Based on the occurrence features of Group B coal-seams at a coal mine in the Huainan coal mining area, the elasto-plastic mechanical damage constitutive functions and numerical model for the protective layer excavatio...Based on the occurrence features of Group B coal-seams at a coal mine in the Huainan coal mining area, the elasto-plastic mechanical damage constitutive functions and numerical model for the protective layer excavation were established. With the UDEC2D computer program, after the upper protective layer was mined, the stress field change trends, crack development, and expansion deformation trends of underlying coal rock seams in the floor of the working face were simulated and analyzed. The simulation results show the stress changes in coal rock seams, the evolution process of pre-cracks during the process of upper protective layer mining, the caved zone and fractured zone of the underlying coal rock seams. At the same time, the results from the actual investigation and analysis of protected layer deformation match the simulation values, which verifies the validity and accuracy of numerical simulation results. The study results have an important guiding significance for gas management in low permeability and high gas coal seams with similar mining conditions.展开更多
Given the background of a transmission tower erected on a particular mining subsidence area,we used finite element modeling to analyze the anti-deformation performance of transmission towers under a number of differen...Given the background of a transmission tower erected on a particular mining subsidence area,we used finite element modeling to analyze the anti-deformation performance of transmission towers under a number of different load conditions,including horizontal foundation displacement,uneven vertical downward displacement,wind loads and icing conditions.The results show that the failure in stability of a single steel angle iron represents the limit of the tower given ground deformation.We calculated the corresponding limits of foundation displacements.The results indicate that compression displacement of the foundation is more dangerous than tension displacement.Under complex foundation displacement conditions,horizontal foundation displacement is a key factor leading to failure in the stability of towers.Under conditions of compression or tension displacement of the foundation,wind load becomes the key factor.Towers do not fail when foundation displacements are smaller than 1% (under tension) or 0.5% (under horizontal compression or single foundation subsidence) of the distance between two supports.展开更多
基金support from the National Key Basic Research and Development Program (No. 2011CB201206)the Junior Fellowships for Advanced Innovation Think-Tank Program from China Association for Science and Technology (No. DXB-ZKQN-2016-048)
文摘A pressure relief gas extraction technical model of a typical mining area is proposed based on coal and gas simultaneous extraction theory. Flac3 Dwas employed to model vertical stress and displacement contour plot characteristics of non-outburst coal seam(No. 4) on top of outburst coal seam(No. 2) along strike and incline directions. Field investigations were also conducted to verify the scientific nature of the simulation. The results demonstrate that gas pressure in No. 2 coal seam dropped to approximately 0.55 MPa in the pressure relief multi-coal seam. The highest expansion rate of the coal mine reached up to 2.58%.The pressure-relief angle was 76° along the incline direction and 60° along the strike direction. As the expansion rate and pressure-relief angle increased and the gas pressure decreased, a large amount of gas flowed into the gob of No. 4 from No. 2 coal seam and was later discharged through specific gas pipes,which eliminated No. 2 outburst risks. This study resulted in positive outcomes in that gas extraction time was reduced by 13.5 days, due to pressure relief, and drilling work load was reduced by 0.1161 m/t coal. This method ensures that gas is discharged from the outburst coal seam quickly and safely,demonstrating that the proposed technical model of pressure-relief gas extraction is effective in a multi-coal seam region.
基金supported by the National Natural Science Foundation of China (Nos. 40874070,40904028 and 51104156)the Self-Researched Subject of State Key Laboratory of Coal Resources and Mine Safety (No. SKLCRSM09X01)the Specialized Fund for the Basic Research Operating Expenses Program of Central College (No. 2010QNB01)
文摘The front abutment pressure of a fully-mechanized workface of 11061 soft coal isolated island of Liangbei Coal Mine was measured and studied using a self-developed mining-induced stress monitoring system associated with electromagnetic radiation technology, and the effects of abutment pressure distribution on strata behavior we discussed. The results indicate that the miningdnduced influencing distance advanced at the fully-mechanized working face of soft coal isolated island is larger than that at the gen- eral working face at the isolated island, besides the fracture zone in front of working face was widened to some extent, and the influencing range caused by relaxations on both roadways became bigger with the advancing working face. Moreover, it can be indicated that mining has significant effect on strata behav- ior of fully-mechanized working face of soft coal isolated island, which is mostly distributed in the area of stress concentration. The research results have an important reference value for revealing the distribution pattern of the front abutment pressure of a fully-mechanized working face of soft coal isolated island, and controlling the coal-rock dynamic disaster occurrence under similar mining conditions.
基金Acknowledgments The program was supported by the National Natural Science Foundation of China (51427804) and the Open Found of State Key Laboratory of Deep Coal Mining & Environment Protection.
文摘In multiple seams mining, the seam with relatively low gas content (protective seam) is often extracted prior to mining its overlying and/or underlying seams of high gas content and low permeability to minimize the risk of high gas emission and outbursts of coal and gas. A key to success with this mining sequence is to gain a detailed understanding of the movement and fracture evolution of the overlying and underlying strata after the protective seam in extracted. In Zhuji mine, the No. 11-2 seam is extracted as a protective seam with the pillarless mining method by retaining goal-side roadways prior to its overlying No. 13-1 seam. An investigation has been undertaken in the panel 1111 (1) of Zhuji mine to physically simulate the movement and fracture evolution of the overlying strata alter the No. 1 I-2 seam is extracted. In the physical simulation, the displacement, strain, and deformation and failure process of the model for simulation were acquired with various means such as grating displacement meter, strain gauges, and digital photography. The simulation result shows that: (1) Initial caving interval of the immediate roof was 21.6 m, the first weighting interval was 23.5-37.3 m with the average interval of 33.5 m, and the periodic weighting interval of the main roof was in a range of 8.2-20.55 m and averaged at 15.2 m. (2) The maximum height of the caving zone after the extraction of No. 11-2 seam was 8.0 m, which was 4 times of the seam mining height and the internal strata of the caving zone collapsed irregularly. The mining-induced fractures developed 8-30 m above the mined No. 11-2 seam, which was 7.525 times of the seam mining height, the fracture zone was about 65° upward from the seam open-off cut toward the goaf, the height of longitudinal joint growth was 4-20 times of the mining seam height, and the height of lateral joint growth was 20-25 times of the mining seam height. (3) The "arch-in-arch" mechanical structure of the internal goaf was bounded by an expansion angle of broken strata in the lateral direction of the retained goaf-side roadway. The spatial and temporal evolution regularities of over- burden's displacement field and stress field, dynamic development process and distribution of fracture field were analyzed. Based on the simulation results, it is recommended that several goaf drainage methods, i.e. gas drainage with buried pipes in goaf, surface goaf gas drainage, and cross-measure boreholes, should be implemented to ensure the safe mining of the panel 1111 (1).
基金Supported by the National Natural Science Foundation of China (51274194, 51004104) the Program for New Century Excellent Talents in University (NCET- 12-0958)
文摘t Research and development of safe and effective control technology of hard roof is an inevitable trend at present. Directional hydraulic fracturing technology is expected to become a safe and effective way to control and manage hard roof. In order to make hard roof fracture in a directional way, a hydraulic fracture field test has been conducted in the third panel district of Tashan Coal Mine in Datong. First, two hydraulic fracturing drilling holes and four observing drilling holes were arranged in the roof, followed by a wedge-shaped ring slot in each hydraulic fracturing drilling hole. The hydraulic fracturing holes were then sealed and, hydraulic fracturing was conducted. The results show that the hard roof is fractured directionally by the hydraulic fracturing function of the two fracturing drilling holes; the sudden drop, or the overall downward trend of hydraulic pressure from hydraulic monitoring is the proof that the rock in the hard roof has been fractured. The required hydraulic pressure to fracture the hard roof in Tashan coal mine, consisting of carboniferous sandstone layer, is 50.09 MPa, and the fracturing radius of a single drilling hole is not less than 10.5 m. The wedge-shaped ring slot made in the bottom of the hydraulic fracturing drilling hole plays a guiding role for crack propagation. After the hydraulic fracturing drill hole is cracked, the propagation of the resulting hydraulic crack, affected mainly by the regional stress field, will turn to other directions.
基金supported by the National Basic Research Program of China (No. 2010CB226805)the Taishan Scholar Construction Project of Shandong Province, China+3 种基金the National Natural Science Foundation of China (No. 51344009)the Research Award Fund for Outstanding Young Scientists of Shandong Province (No. BS2012NJ007)the Ground Pressure and Strata Control Innovative Team Fund of SDUST (No. 2010KYTD105)the Natural Science Foundation of Shandong Province (No. ZR2012EEZ002)
文摘When gob-side entry retaining is implemented in deep coal seams threatened by rockburst, the cementbased supporting body beside roadway will bear greater roof pressure and strong impact load. Then the supporting body may easily deform and fail because of its low strength in the early stage. This paper established the roadside support mechanical model of gob-side entry retaining. Based on this model,we proposed and used the soft–strong supporting body as roadside support in the gob-side entry retaining. In the early stage of roof movement, the soft–strong supporting body has a better compressibility, which can not only relieve roof pressure and strong impact load, but also reduce the supporting resistance and prevent the supporting body from being crushed. In the later stage, with the increase of the strength of the supporting body, it can better support the overlying roof. The numerical simulation results and industrial test show that the soft–strong supporting body as roadside support can be better applied into the gob-side entry retaining in deep coal seams threatened by rockburst.
基金Supported by the National Natural Science Foundation of China (51004003) the Natural Science Foundation of Ministry of Education of Anhui Province (K J2010A091 )
文摘Based on the occurrence features of Group B coal-seams at a coal mine in the Huainan coal mining area, the elasto-plastic mechanical damage constitutive functions and numerical model for the protective layer excavation were established. With the UDEC2D computer program, after the upper protective layer was mined, the stress field change trends, crack development, and expansion deformation trends of underlying coal rock seams in the floor of the working face were simulated and analyzed. The simulation results show the stress changes in coal rock seams, the evolution process of pre-cracks during the process of upper protective layer mining, the caved zone and fractured zone of the underlying coal rock seams. At the same time, the results from the actual investigation and analysis of protected layer deformation match the simulation values, which verifies the validity and accuracy of numerical simulation results. The study results have an important guiding significance for gas management in low permeability and high gas coal seams with similar mining conditions.
基金National Natural Science Foundation of China(No.50004008)Xuzhou Power Supply Company and the Fundamental Research Funds for the Central Universities(No.2011QNB18) for their financial and technical support for this work
文摘Given the background of a transmission tower erected on a particular mining subsidence area,we used finite element modeling to analyze the anti-deformation performance of transmission towers under a number of different load conditions,including horizontal foundation displacement,uneven vertical downward displacement,wind loads and icing conditions.The results show that the failure in stability of a single steel angle iron represents the limit of the tower given ground deformation.We calculated the corresponding limits of foundation displacements.The results indicate that compression displacement of the foundation is more dangerous than tension displacement.Under complex foundation displacement conditions,horizontal foundation displacement is a key factor leading to failure in the stability of towers.Under conditions of compression or tension displacement of the foundation,wind load becomes the key factor.Towers do not fail when foundation displacements are smaller than 1% (under tension) or 0.5% (under horizontal compression or single foundation subsidence) of the distance between two supports.