The main technologies for reducing flue gas heat loss of pulverized coal-fired boilers are introduced, and the suitability of these technologies for boiler operation and the principles for selection of these technolog...The main technologies for reducing flue gas heat loss of pulverized coal-fired boilers are introduced, and the suitability of these technologies for boiler operation and the principles for selection of these technologies are explored. The main conclusions are: 1) the non-equilibrium control over flue gas flow rates at the inlet of the air heater and the reversal rotation of the air heater rotator should be popularized as regular technologies in large boilers; 2) increasing the area of the air heater to reduce the flue gas heat loss in pulverized coal-fired boilers should be the top option and increasing the area of the economizer be the next choice; 3) low- pressure economizer technology could save energy under special conditions and should be compared with the technology of increasing economizer area in terms of technical economics when the latter is feasible; 4) the hot primary air heater is only suitable to the pnlvefizing system with a large amount of cold air mixed.展开更多
The coke plant of a steel plant corresponds to the area that transforms a blend of coal into coke for using in blast furnace and steam to power plant. The coking plant of ThyssenKrupp CSA uses the heat recovery techno...The coke plant of a steel plant corresponds to the area that transforms a blend of coal into coke for using in blast furnace and steam to power plant. The coking plant of ThyssenKrupp CSA uses the heat recovery technology with stamping charger for stamping and preparation a blend of coals for charging and coking. Stamping technology adds several benefits to the process, such as increased density, homogeneity and alignment of the coal cake charged into the oven, as well as provides better control of the coking process, improves parameters of coke quality and allows coal blending with lower coking power, thereby reducing the production cost of coke and power generation. Through the automation of stamping charger, it is possible to evaluate and calculate the stamped coal density charged and the productivity gains this system provides.展开更多
A device to activate lignite and sludge by electro-hydraulic impulse is presented. It comprises an impulse current generator constituted by a high voltage transformer, a high voltage silicon rectifier, a current-limit...A device to activate lignite and sludge by electro-hydraulic impulse is presented. It comprises an impulse current generator constituted by a high voltage transformer, a high voltage silicon rectifier, a current-limiting resistor, a capacitor bank and an air-break switch, and a lignite and sludge appliance made up of two plane electrodes and a working chamber. The installation activates the lignite or sludge delivered to the working chamber by the impulse current that is from the generator to puncture the main gap in the working chamber, raise the temperature therein up to (20 000 to 40 000) K and the energy density to as high as 109 Jm-3, and form a plasma piston. The alternative development and attenuation of plasma expansion makes the lignite in a number of physical and chemical processes resulting in diverse active radicals and ions, and also breaks it into grains mostly smaller than 250 mm. It is founded by experimental study that the technology can raise the content of nitro-nitrogen by 1.4 to 1.5 times and that of dissoluble organic substances by 5 to 10 times which is probably attributed to the decomposition of the ample germs in the lignite. The calculated power requirement to activate lignite is about (50 to 60) kWht-1. In comparison with muck applied to cucumber cultivation, the activated lignite demonstrates its features as an effective and economical green fertilizer by the same yield with half amount. These findings imply a promising access to green fertilizer.展开更多
文摘The main technologies for reducing flue gas heat loss of pulverized coal-fired boilers are introduced, and the suitability of these technologies for boiler operation and the principles for selection of these technologies are explored. The main conclusions are: 1) the non-equilibrium control over flue gas flow rates at the inlet of the air heater and the reversal rotation of the air heater rotator should be popularized as regular technologies in large boilers; 2) increasing the area of the air heater to reduce the flue gas heat loss in pulverized coal-fired boilers should be the top option and increasing the area of the economizer be the next choice; 3) low- pressure economizer technology could save energy under special conditions and should be compared with the technology of increasing economizer area in terms of technical economics when the latter is feasible; 4) the hot primary air heater is only suitable to the pnlvefizing system with a large amount of cold air mixed.
文摘The coke plant of a steel plant corresponds to the area that transforms a blend of coal into coke for using in blast furnace and steam to power plant. The coking plant of ThyssenKrupp CSA uses the heat recovery technology with stamping charger for stamping and preparation a blend of coals for charging and coking. Stamping technology adds several benefits to the process, such as increased density, homogeneity and alignment of the coal cake charged into the oven, as well as provides better control of the coking process, improves parameters of coke quality and allows coal blending with lower coking power, thereby reducing the production cost of coke and power generation. Through the automation of stamping charger, it is possible to evaluate and calculate the stamped coal density charged and the productivity gains this system provides.
基金the National Natural Science Foundation of China (59979029)
文摘A device to activate lignite and sludge by electro-hydraulic impulse is presented. It comprises an impulse current generator constituted by a high voltage transformer, a high voltage silicon rectifier, a current-limiting resistor, a capacitor bank and an air-break switch, and a lignite and sludge appliance made up of two plane electrodes and a working chamber. The installation activates the lignite or sludge delivered to the working chamber by the impulse current that is from the generator to puncture the main gap in the working chamber, raise the temperature therein up to (20 000 to 40 000) K and the energy density to as high as 109 Jm-3, and form a plasma piston. The alternative development and attenuation of plasma expansion makes the lignite in a number of physical and chemical processes resulting in diverse active radicals and ions, and also breaks it into grains mostly smaller than 250 mm. It is founded by experimental study that the technology can raise the content of nitro-nitrogen by 1.4 to 1.5 times and that of dissoluble organic substances by 5 to 10 times which is probably attributed to the decomposition of the ample germs in the lignite. The calculated power requirement to activate lignite is about (50 to 60) kWht-1. In comparison with muck applied to cucumber cultivation, the activated lignite demonstrates its features as an effective and economical green fertilizer by the same yield with half amount. These findings imply a promising access to green fertilizer.